Tao Wang, Penghao Li, Xue Bai, Shilin Tian, Maosen Yang, Dong Leng, Hua Kui, Sujuan Zhang, Xiaomiao Yan, Qu Zheng, Pulin Luo, Changming He, Yan Jia, Zhoulin Wu, Huimin Qiu, Jing Li, Feng Wan, Muhammad A. Ali, Rurong Mao, Yong-Xin Liu, Diyan Li
{"title":"Vaginal microbiota are associated with in vitro fertilization during female infertility","authors":"Tao Wang, Penghao Li, Xue Bai, Shilin Tian, Maosen Yang, Dong Leng, Hua Kui, Sujuan Zhang, Xiaomiao Yan, Qu Zheng, Pulin Luo, Changming He, Yan Jia, Zhoulin Wu, Huimin Qiu, Jing Li, Feng Wan, Muhammad A. Ali, Rurong Mao, Yong-Xin Liu, Diyan Li","doi":"10.1002/imt2.185","DOIUrl":"10.1002/imt2.185","url":null,"abstract":"<p>The vaginal microbiome plays an essential role in the reproductive health of human females. As infertility increases worldwide, understanding the roles that the vaginal microbiome may have in infertility and in vitro fertilization (IVF) treatment outcomes is critical. To determine the vaginal microbiome composition of 1411 individuals (1255 undergoing embryo transplantation) and their associations with reproductive outcomes, clinical and biochemical features are measured, and vaginal samples are 16S rRNA sequenced. Our results suggest that both too high and too low abundance of <i>Lactobacillus</i> is not beneficial for pregnancy; a moderate abundance is more beneficial. A moderate abundance of <i>Lactobacillus crispatus</i> and <i>Lactobacillus iners</i> (~80%) (with a pregnancy rate of I-B: 54.35% and III-B: 57.73%) is found beneficial for pregnancy outcomes compared with a higher abundance (>90%) of <i>Lactobacillus</i> (I-A: 44.81% and III-A: 51.06%, respectively). The community state type (CST) IV-B (contains a high to moderate relative abundance of <i>Gardnerella vaginalis</i>) shows a similar pregnant ratio (48.09%) with I-A and III-A, and the pregnant women in this CST have a higher abundance of <i>Lactobacillus</i> species. Metagenome analysis of 71 samples shows that nonpregnant women are detected with more antibiotic-resistance genes, and Proteobacteria and Firmicutes are the main hosts. The inherent differences within and between women in different infertility groups suggest that vaginal microbes might be used to detect infertility and potentially improve IVF outcomes.</p>","PeriodicalId":73342,"journal":{"name":"iMeta","volume":"3 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/imt2.185","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140228996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Deciphering unique and shared interactions between the human gut microbiota and oral antidiabetic drugs","authors":"Huahui Ren, Zhun Shi, Fangming Yang, Shujie Wang, Fengyi Yuan, Tingting Li, Min Li, Jiahui Zhu, Junhua Li, Kui Wu, Yifei Zhang, Guang Ning, Karsten Kristiansen, Weiqing Wang, Yanyun Gu, Huanzi Zhong","doi":"10.1002/imt2.179","DOIUrl":"10.1002/imt2.179","url":null,"abstract":"<p>The administration of oral antidiabetic drugs (OADs) to patients with type 2 diabetes elicits distinct and shared changes in the gut microbiota, with acarbose and berberine exhibiting greater impacts on the gut microbiota than metformin, vildagliptin, and glipizide. The baseline gut microbiota strongly associates with treatment responses of OADs.\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":73342,"journal":{"name":"iMeta","volume":"3 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/imt2.179","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140245406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shi Zhong, Yu-Qing Sun, Jin-Xi Huo, Wen-Yi Xu, Ya-Nan Yang, Jun-Bo Yang, Wei-Jie Wu, Yong-Xin Liu, Chong-Ming Wu, You-Gui Li
{"title":"The gut microbiota-aromatic hydrocarbon receptor (AhR) axis mediates the anticolitic effect of polyphenol-rich extracts from Sanghuangporus","authors":"Shi Zhong, Yu-Qing Sun, Jin-Xi Huo, Wen-Yi Xu, Ya-Nan Yang, Jun-Bo Yang, Wei-Jie Wu, Yong-Xin Liu, Chong-Ming Wu, You-Gui Li","doi":"10.1002/imt2.180","DOIUrl":"10.1002/imt2.180","url":null,"abstract":"<p>Inflammatory bowel disease (IBD) is a significant global health concern. The gut microbiota plays an essential role in the onset and development of IBD. <i>Sanghuangporus</i> (SH), a traditional Chinese medicinal mushroom, has excellent anti-inflammatory effects and is effective at modulating the gut microbiota. Despite these attributes, the specific anticolitic effects of SH and the mechanisms through which the gut microbiota mediates its benefits remain unclear. Herein, we demonstrated that polyphenol-rich extract from SH effectively alleviated the pathological symptoms of dextran sodium sulfate (DSS)-induced colitis in mice by modulating the gut microbiota. Treatment with SH distinctly enriched <i>Alistipes</i>, especially <i>Alistipes onderdonkii</i>, and its metabolite 5-hydroxyindole-3-acetic acid (5HIAA). Oral gavage of live <i>A. onderdonkii</i> or 5HIAA potently mitigated DSS-induced colitis in mice. Moreover, both 5HIAA and SH significantly activated the aromatic hydrocarbon receptor (AhR), and the administration of an AhR antagonist abrogated their protective effects against colitis. These results underscore the potent efficacy of SH in diminishing DSS-induced colitis through the promotion of <i>A. onderdonkii</i> and 5HIAA, ultimately activating AhR signaling. This study unveils potential avenues for developing therapeutic strategies for colitis based on the interplay between SH and the gut microbiota.</p>","PeriodicalId":73342,"journal":{"name":"iMeta","volume":"3 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/imt2.180","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140254266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhongji Pu, Chun-Lin Shi, Che Ok Jeon, Jingyuan Fu, Shuang-Jiang Liu, Canhui Lan, Yanlai Yao, Yong-Xin Liu, Baolei Jia
{"title":"ChatGPT and generative AI are revolutionizing the scientific community: A Janus-faced conundrum","authors":"Zhongji Pu, Chun-Lin Shi, Che Ok Jeon, Jingyuan Fu, Shuang-Jiang Liu, Canhui Lan, Yanlai Yao, Yong-Xin Liu, Baolei Jia","doi":"10.1002/imt2.178","DOIUrl":"10.1002/imt2.178","url":null,"abstract":"<p>The advent of generative artificial intelligence (AI) technologies marks a transformative moment for the scientific sphere, unlocking novel avenues to elevate scientific writing's efficiency and quality, expedite insight discovery, and enhance code development processes. Essential to leveraging these advancements is prompt engineering, a method that enhances AI interaction efficiency and quality. Despite its benefits, effective application requires blending researchers' expertise with AI, avoiding overreliance. A balanced strategy of integrating AI with independent critical thinking ensures the advancement and quality of scientific research, leveraging innovation while maintaining research integrity.\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":73342,"journal":{"name":"iMeta","volume":"3 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/imt2.178","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140425488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Photoaffinity probe-based antimalarial target identification of artemisinin in the intraerythrocytic developmental cycle of Plasmodium falciparum","authors":"Peng Gao, Jianyou Wang, Chong Qiu, Huimin Zhang, Chen Wang, Ying Zhang, Peng Sun, Honglin Chen, Yin Kwan Wong, Jiayun Chen, Junzhe Zhang, Huan Tang, Qiaoli Shi, Yongping Zhu, Shengnan Shen, Guang Han, Chengchao Xu, Lingyun Dai, Jigang Wang","doi":"10.1002/imt2.176","DOIUrl":"https://doi.org/10.1002/imt2.176","url":null,"abstract":"<p>Malaria continues to pose a serious global health threat, and artemisinin remains the core drug for global malaria control. However, the situation of malaria resistance has become increasingly severe due to the emergence and spread of artemisinin resistance. In recent years, significant progress has been made in understanding the mechanism of action (MoA) of artemisinin. Prior research on the MoA of artemisinin mainly focused on covalently bound targets that are alkylated by artemisinin-free radicals. However, less attention has been given to the reversible noncovalent binding targets, and there is a paucity of information regarding artemisinin targets at different life cycle stages of the parasite. In this study, we identified the protein targets of artemisinin at different stages of the parasite's intraerythrocytic developmental cycle using a photoaffinity probe. Our findings demonstrate that artemisinin interacts with parasite proteins in vivo through both covalent and noncovalent modes. Extensive mechanistic studies were then conducted by integrating target validation, phenotypic studies, and untargeted metabolomics. The results suggest that protein synthesis, glycolysis, and oxidative homeostasis are critically involved in the antimalarial activities of artemisinin. In summary, this study provides fresh insights into the mechanisms underlying artemisinin's antimalarial effects and its protein targets.</p>","PeriodicalId":73342,"journal":{"name":"iMeta","volume":"3 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/imt2.176","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140559776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chun-Hui Gao, Chengjie Chen, Turgut Akyol, Adrian Dusa, Guangchuang Yu, Bin Cao, Peng Cai
{"title":"ggVennDiagram: Intuitive Venn diagram software extended","authors":"Chun-Hui Gao, Chengjie Chen, Turgut Akyol, Adrian Dusa, Guangchuang Yu, Bin Cao, Peng Cai","doi":"10.1002/imt2.177","DOIUrl":"10.1002/imt2.177","url":null,"abstract":"<p>Highlights of ggVennDiagram include: (1) Subset/Region filling Venn diagram up to seven sets; (2) Upset plot with unlimited sets; (3) Venn Calculator for two or more sets; (4) Provide as R package, Shiny App, and TBtools plugin.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":73342,"journal":{"name":"iMeta","volume":"3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/imt2.177","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139837354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Isolation of potentially novel species expands the genomic and functional diversity of Lachnospiraceae","authors":"Xiaoqian Lin, Tongyuan Hu, Zhinan Wu, Lingne Li, Yuhao Wang, Dingyang Wen, Xudong Liu, Wenxi Li, Hewei Liang, Xin Jin, Xun Xu, Jian Wang, Huanming Yang, Karsten Kristiansen, Liang Xiao, Yuanqiang Zou","doi":"10.1002/imt2.174","DOIUrl":"10.1002/imt2.174","url":null,"abstract":"<p>The Lachnospiraceae family holds promise as a source of next-generation probiotics, yet a comprehensive delineation of its diversity is lacking, hampering the identification of suitable strains for future applications. To address this knowledge gap, we conducted an in-depth genomic and functional analysis of 1868 high-quality genomes, combining data from public databases with our new isolates. This data set represented 387 colonization-selective species-level clusters, of which eight genera represented multilineage clusters. Pan-genome analysis, single-nucleotide polymorphism (SNP) identification, and probiotic functional predictions revealed that species taxonomy, habitats, and geography together shape the functional diversity of Lachnospiraceae. Moreover, analyses of associations with atherosclerotic cardiovascular disease (ACVD) and inflammatory bowel disease (IBD) indicated that several strains of potentially novel Lachnospiraceae species possess the capacity to reduce the abundance of opportunistic pathogens, thereby imparting potential health benefits. Our findings shed light on the untapped potential of novel species enabling knowledge-based selection of strains for the development of next-generation probiotics holding promise for improving human health and disease management.</p>","PeriodicalId":73342,"journal":{"name":"iMeta","volume":"3 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/imt2.174","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139840546","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bacterial load in meconium","authors":"Wen-Yu Jin, Jing Peng, Jinping Dai, Rongkang Tang, Jia-Xin Guo, Huan Zhao, Jielin Wang, Shu Zhang, Yi-Zhou Gao","doi":"10.1002/imt2.173","DOIUrl":"10.1002/imt2.173","url":null,"abstract":"<p>The spike-in plasmid method was utilized to perform an analysis on meconium and second-pass feces, yielding both relative and absolute quantitative results. With the absolute quantitative data, the abundance of bacteria in 17 meconium samples and 17 second-pass fecal samples were found to be 1.14 × 10<sup>7</sup> and 1.59 × 10<sup>9</sup> copies/g, respectively. The mode of delivery can significantly influence the alterations and compositions of gut bacteria in a newborn within 72 h.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":73342,"journal":{"name":"iMeta","volume":"3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/imt2.173","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139779578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yunyun Gao, Guoxing Zhang, Shunyao Jiang, Yong-Xin Liu
{"title":"Wekemo Bioincloud: A user-friendly platform for meta-omics data analyses","authors":"Yunyun Gao, Guoxing Zhang, Shunyao Jiang, Yong-Xin Liu","doi":"10.1002/imt2.175","DOIUrl":"10.1002/imt2.175","url":null,"abstract":"<p>The increasing application of meta-omics approaches to investigate the structure, function, and intercellular interactions of microbial communities has led to a surge in available data. However, this abundance of human and environmental microbiome data has exposed new scalability challenges for existing bioinformatics tools. In response, we introduce Wekemo Bioincloud—a specialized platform for -omics studies. This platform offers a comprehensive analysis solution, specifically designed to alleviate the challenges of tool selection for users in the face of expanding data sets. As of now, Wekemo Bioincloud has been regularly equipped with 22 workflows and 65 visualization tools, establishing itself as a user-friendly and widely embraced platform for studying diverse data sets. Additionally, the platform enables the online modification of vector outputs, and the registration-independent personalized dashboard system ensures privacy and traceability. Wekemo Bioincloud is freely available at https://www.bioincloud.tech/.</p>","PeriodicalId":73342,"journal":{"name":"iMeta","volume":"3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/imt2.175","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139840332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mei Li, Jie Hu, Zhong Wei, Alexandre Jousset, Thomas Pommier, Xiangyang Yu, Yangchun Xu, Qirong Shen
{"title":"Synthetic microbial communities: Sandbox and blueprint for soil health enhancement","authors":"Mei Li, Jie Hu, Zhong Wei, Alexandre Jousset, Thomas Pommier, Xiangyang Yu, Yangchun Xu, Qirong Shen","doi":"10.1002/imt2.172","DOIUrl":"https://doi.org/10.1002/imt2.172","url":null,"abstract":"<p>We summarize here the use of SynComs in improving various dimensions of soil health, including fertility, pollutant removal, soil-borne disease suppression, and soil resilience; as well as a set of useful guidelines to assess and understand the principles for designing SynComs to enhance soil health. Finally, we discuss the next stages of SynComs applications, including highly diverse and multikingdom SynComs targeting several functions simultaneously.\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":73342,"journal":{"name":"iMeta","volume":"3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/imt2.172","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139915591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}