Sungho Kim, William Lepkowski, Seth J Wilk, Trevor J Thornton, Bertan Bakkaloglu
{"title":"A Low-power CMOS BFSK Transceiver for Health Monitoring Systems.","authors":"Sungho Kim, William Lepkowski, Seth J Wilk, Trevor J Thornton, Bertan Bakkaloglu","doi":"10.1109/BioCAS.2011.6107751","DOIUrl":"https://doi.org/10.1109/BioCAS.2011.6107751","url":null,"abstract":"<p><p>A CMOS low-power transceiver for implantable and external health monitoring devices operating in the MICS band is presented. The LNA core has an integrated mixer in a folded configuration to reuse the bias current, allowing high linearity with a low power supply levels. The baseband strip consists of a pseudo differential MOS-C band-pass filter achieving demodulation of 150kHz-offset BFSK signals. An all digital frequency-locked loop is used for LO generation in the RX mode and for driving a class AB power amplifier in the TX mode. The MICS transceiver is designed and fabricated in a 0.18μm 1-poly, 6-metal CMOS process. The sensitivities of -70dBm and -98dBm were achieved with NF of 40dB and 11dB at the data rate of 100kb/s while consuming only 600μW and 1.5mW at 1.2V and 1.8V, respectively. The BERs are less than 10<sup>-3</sup> at the input powers of -70dBm at 1.2V and -98dBm at 1.8V at the data rate of 100kb/s. Finally, the output power of the transmitter is 0dBm for a power consumption of 1.8mW.</p>","PeriodicalId":73279,"journal":{"name":"IEEE Biomedical Circuits and Systems Conference : healthcare technology : [proceedings]. IEEE Biomedical Circuits and Systems Conference","volume":" ","pages":"157-160"},"PeriodicalIF":0.0,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/BioCAS.2011.6107751","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32069250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Integrated magnetic array for bio-object sensing and manipulation","authors":"T. A. Faisal, M. Fathi","doi":"10.1109/BIOCAS.2010.5709571","DOIUrl":"https://doi.org/10.1109/BIOCAS.2010.5709571","url":null,"abstract":"Magnetic molecular-level interrogation, manipulation, and diagnosis are emerging as lab-on-chip platforms. These platforms entail low-cost, low-power, portable, and high efficiency integrated implementations. We introduce an all-integrated programmable 16×16 magnetic coil array chip for sensing and actuating small single bio-objects or collaboratively manipulating larger ones. The die-size is 1.5×1.5mm2 designed in bulk 0.5μm CMOS technology. The integrated design does not require any external magnetic source. It relies on the Hall effect generated by the smallest permissible vertical coil inductors (in this reported technology, the smallest inductor's planar area is 6μmx6μm). The coil array is selectively and dynamically controlled. Each cell, composed of the coil and its logical control circuitry, can detect small objects in the order of 1μm diameter as well as emit eight programmable magnetic field levels for manipulation. All array sensing and driving components are shared to reduce the overall imprint. Also, they are tuned to work at 900MHz incorporating high-speed serial row/column switching for seamless pseudoparallel operation.","PeriodicalId":73279,"journal":{"name":"IEEE Biomedical Circuits and Systems Conference : healthcare technology : [proceedings]. IEEE Biomedical Circuits and Systems Conference","volume":"26 1","pages":"62-65"},"PeriodicalIF":0.0,"publicationDate":"2010-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84353975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}