A Low-power CMOS BFSK Transceiver for Health Monitoring Systems.

Sungho Kim, William Lepkowski, Seth J Wilk, Trevor J Thornton, Bertan Bakkaloglu
{"title":"A Low-power CMOS BFSK Transceiver for Health Monitoring Systems.","authors":"Sungho Kim,&nbsp;William Lepkowski,&nbsp;Seth J Wilk,&nbsp;Trevor J Thornton,&nbsp;Bertan Bakkaloglu","doi":"10.1109/BioCAS.2011.6107751","DOIUrl":null,"url":null,"abstract":"<p><p>A CMOS low-power transceiver for implantable and external health monitoring devices operating in the MICS band is presented. The LNA core has an integrated mixer in a folded configuration to reuse the bias current, allowing high linearity with a low power supply levels. The baseband strip consists of a pseudo differential MOS-C band-pass filter achieving demodulation of 150kHz-offset BFSK signals. An all digital frequency-locked loop is used for LO generation in the RX mode and for driving a class AB power amplifier in the TX mode. The MICS transceiver is designed and fabricated in a 0.18μm 1-poly, 6-metal CMOS process. The sensitivities of -70dBm and -98dBm were achieved with NF of 40dB and 11dB at the data rate of 100kb/s while consuming only 600μW and 1.5mW at 1.2V and 1.8V, respectively. The BERs are less than 10<sup>-3</sup> at the input powers of -70dBm at 1.2V and -98dBm at 1.8V at the data rate of 100kb/s. Finally, the output power of the transmitter is 0dBm for a power consumption of 1.8mW.</p>","PeriodicalId":73279,"journal":{"name":"IEEE Biomedical Circuits and Systems Conference : healthcare technology : [proceedings]. IEEE Biomedical Circuits and Systems Conference","volume":" ","pages":"157-160"},"PeriodicalIF":0.0000,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/BioCAS.2011.6107751","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Biomedical Circuits and Systems Conference : healthcare technology : [proceedings]. IEEE Biomedical Circuits and Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BioCAS.2011.6107751","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

A CMOS low-power transceiver for implantable and external health monitoring devices operating in the MICS band is presented. The LNA core has an integrated mixer in a folded configuration to reuse the bias current, allowing high linearity with a low power supply levels. The baseband strip consists of a pseudo differential MOS-C band-pass filter achieving demodulation of 150kHz-offset BFSK signals. An all digital frequency-locked loop is used for LO generation in the RX mode and for driving a class AB power amplifier in the TX mode. The MICS transceiver is designed and fabricated in a 0.18μm 1-poly, 6-metal CMOS process. The sensitivities of -70dBm and -98dBm were achieved with NF of 40dB and 11dB at the data rate of 100kb/s while consuming only 600μW and 1.5mW at 1.2V and 1.8V, respectively. The BERs are less than 10-3 at the input powers of -70dBm at 1.2V and -98dBm at 1.8V at the data rate of 100kb/s. Finally, the output power of the transmitter is 0dBm for a power consumption of 1.8mW.

用于健康监测系统的低功耗CMOS BFSK收发器。
介绍了一种低功耗CMOS收发器,用于在MICS波段工作的可植入和外部健康监测设备。LNA核心具有折叠配置的集成混频器,可重复使用偏置电流,从而在低电源水平下实现高线性度。基带带由一个伪差分MOS-C带通滤波器组成,实现对150khz偏置BFSK信号的解调。一个全数字锁频环路用于在RX模式下产生LO,并用于在TX模式下驱动AB类功率放大器。MICS收发器采用0.18μm 1聚6金属CMOS工艺设计和制造。在数据速率为100kb/s、NF为40dB和11dB时,灵敏度分别达到-70dBm和-98dBm,而在1.2V和1.8V电压下,功耗分别为600μW和1.5mW。当输入功率为-70dBm (1.2V)和-98dBm (1.8V),数据速率为100kb/s时,ber小于10-3。最后,发射机输出功率为0dBm,功耗为1.8mW。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信