ICS ... : proceedings of the ... ACM International Conference on Supercomputing. International Conference on Supercomputing最新文献

筛选
英文 中文
AUTO-PRUNE: automated DNN pruning and mapping for ReRAM-based accelerator AUTO-PRUNE:基于reram的加速器的自动DNN修剪和映射
Siling Yang, Weijian Chen, Xuechen Zhang, Shuibing He, Yanlong Yin, Xian-He Sun
{"title":"AUTO-PRUNE: automated DNN pruning and mapping for ReRAM-based accelerator","authors":"Siling Yang, Weijian Chen, Xuechen Zhang, Shuibing He, Yanlong Yin, Xian-He Sun","doi":"10.1145/3447818.3460366","DOIUrl":"https://doi.org/10.1145/3447818.3460366","url":null,"abstract":"Emergent ReRAM-based accelerators support in-memory computation to accelerate deep neural network (DNN) inference. Weight matrix pruning of DNNs is a widely used technique to reduce the size of DNN models, thereby reducing the resource and energy consumption of ReRAM-based accelerators. However, conventional works on weight matrix pruning for ReRAM-based accelerators have three major issues. First, they use heuristics or rules from domain experts to prune the weights, leading to suboptimal pruning policies. Second, they mostly focus on improving compression ratio, thus may not meet accuracy constraints. Third, they ignore direct feedback of hardware. In this paper, we introduce an automated DNN pruning and mapping framework, named AUTO-PRUNE. It leverages reinforcement learning (RL) to automatically determine the pruning policy considering the constraint of accuracy loss. The reward function of RL agents is designed using hardware’s direct feedback (i.e., accuracy and compression rate of occupied crossbars). The function directs the search of the pruning ratio of each layer for a global optimum considering the characteristics of individual layers of DNN models. Then AUTO-PRUNE maps the pruned weight matrices to crossbars to store only nontrivial elements. Finally, to avoid the dislocation problem, we design a new data-path in ReRAM-based accelerators to correctly index and feed input to matrix-vector computation leveraging the mechanism of operation units. Experimental results show that, compared to the state-of-the-art work, AUTO-PRUNE achieves up to 3.3X compression rate, 3.1X area efficiency, and 3.3X energy efficiency with a similar or even higher accuracy.","PeriodicalId":73273,"journal":{"name":"ICS ... : proceedings of the ... ACM International Conference on Supercomputing. International Conference on Supercomputing","volume":"3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72946265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 22
Enabling energy-efficient DNN training on hybrid GPU-FPGA accelerators 在GPU-FPGA混合加速器上实现高能效DNN训练
Xin He, Jiawen Liu, Zhen Xie, Hao Chen, Guoyang Chen, Weifeng Zhang, Dong Li
{"title":"Enabling energy-efficient DNN training on hybrid GPU-FPGA accelerators","authors":"Xin He, Jiawen Liu, Zhen Xie, Hao Chen, Guoyang Chen, Weifeng Zhang, Dong Li","doi":"10.1145/3447818.3460371","DOIUrl":"https://doi.org/10.1145/3447818.3460371","url":null,"abstract":"DNN training consumes orders of magnitude more energy than inference and requires innovative use of accelerators to improve energy-efficiency. However, despite having complementary features, GPUs and FPGAs have been mostly used independently for the entire training process, thus neglecting the opportunity in assigning individual but distinct operations to the most suitable hardware. In this paper, we take the initiative to explore new opportunities and viable solutions in enabling energy-efficient DNN training on hybrid accelerators. To overcome fundamental challenges including avoiding training throughput loss, enabling fast design space exploration, and efficient scheduling, we propose a comprehensive framework, Hype-training, that utilizes a combination of offline characterization, performance modeling, and online scheduling of individual operations. Experimental tests using NVIDIA V100 GPUs and Intel Stratix 10 FPGAs show that, Hype-training is able to exploit a mixture of GPUs and FPGAs at a fine granularity to achieve significant energy reduction, by 44.3% on average and up to 59.7%, without any loss in training throughput. Hype-training can also enforce power caps more effectively than state-of-the-art power management mechanisms on GPUs.","PeriodicalId":73273,"journal":{"name":"ICS ... : proceedings of the ... ACM International Conference on Supercomputing. International Conference on Supercomputing","volume":"43 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74467396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
PSSM PSSM
Shougang Yuan, Yan Solihin, Huiyang Zhou
{"title":"PSSM","authors":"Shougang Yuan, Yan Solihin, Huiyang Zhou","doi":"10.1145/3447818.3460374","DOIUrl":"https://doi.org/10.1145/3447818.3460374","url":null,"abstract":"In this paper, we investigate the secure memory architecture for GPUs and point out that conventional CPU secure memory architecture can not be directly adopted to the GPUs. The key reasons include: (1) accessing the security metadata, including encryption counters, message authentication codes (MACs) and integrity trees, requires significant memory bandwidth, which may lead to severe bandwidth competition with normal data accesses and degrade the GPU performance; (2) contemporary GPUs use partitioned memory organization, which results in storage and coherence problems for encryption counters and integrity trees since different partitions may need to update the same counter/integrity tree blocks; and (3) the existing split-counter block organization is not friendly to sectored caches, which are commonly used in GPU for bandwidth savings. Based on these observations, we propose partitioned and sectored security metadata (PSSM), which has two components: (a) using the offset addresses (referred to as local addresses) within each partition, instead of the virtual or physical addresses, to generate the metadata so as to solve the counter or integrity tree storage and coherence problem and (b) reorganizing the security metadata to make them friendly to the sectored cache structure so as to reduce the memory bandwidth consumption of metadata accesses. With these proposed schemes, the performance overhead of secure GPU memory is reduced from 59.22% to 16.84% on average. If only memory encryption is required, the performance overhead is reduced from 29.53% to 5.18%.","PeriodicalId":73273,"journal":{"name":"ICS ... : proceedings of the ... ACM International Conference on Supercomputing. International Conference on Supercomputing","volume":"140 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91459677","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
FULL-W2V: fully exploiting data reuse for W2V on GPU-accelerated systems FULL-W2V:在gpu加速系统上充分利用W2V的数据重用
Thomas Randall, Tyler N. Allen, Rong Ge
{"title":"FULL-W2V: fully exploiting data reuse for W2V on GPU-accelerated systems","authors":"Thomas Randall, Tyler N. Allen, Rong Ge","doi":"10.1145/3447818.3460373","DOIUrl":"https://doi.org/10.1145/3447818.3460373","url":null,"abstract":"Word2Vec remains one of the highly-impactful innovations in the field of Natural Language Processing (NLP) that represents latent grammatical and syntactical information in human text with dense vectors in a low dimension. Word2Vec has high computational cost due to the algorithm’s inherent sequentiality, intensive memory accesses, and the large vocabularies it represents. While prior studies have investigated technologies to explore parallelism and improve memory system performance, they struggle to effectively gain throughput on powerful GPUs. We identify memory data access and latency as the primary bottleneck in prior works on GPUs, which prevents highly optimized kernels from attaining the architecture’s peak performance. We present a novel algorithm, FULL-W2V, which maximally exploits the opportunities for data reuse in the W2V algorithm and leverages GPU architecture and resources to reduce access to low memory levels and improve temporal locality. FULL-W2V is capable of reducing accesses to GPU global memory significantly, e.g., by more than 89%, compared to prior state-of-the-art GPU implementations, resulting in significant performance improvement that scales across successive hardware generations. Our prototype implementation achieves 2.97X speedup when ported from Nvidia Pascal P100 to Volta V100 cards, and outperforms the state-of-the-art by 5.72X on V100 cards with the same embedding quality. In-depth analysis indicates that the reduction of memory accesses through register and shared memory caching and high-throughput shared memory reduction leads to a significantly improved arithmetic intensity. FULL-W2V can potentially benefit many applications in NLP and other domains.","PeriodicalId":73273,"journal":{"name":"ICS ... : proceedings of the ... ACM International Conference on Supercomputing. International Conference on Supercomputing","volume":"6 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76971941","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ThundeRiNG: generating multiple independent random number sequences on FPGAs ThundeRiNG:在fpga上生成多个独立随机数序列
Hongshi Tan, Xinyu Chen, Yao Chen, Bingsheng He, W. Wong
{"title":"ThundeRiNG: generating multiple independent random number sequences on FPGAs","authors":"Hongshi Tan, Xinyu Chen, Yao Chen, Bingsheng He, W. Wong","doi":"10.1145/3447818.3461664","DOIUrl":"https://doi.org/10.1145/3447818.3461664","url":null,"abstract":"In this paper, we propose ThundeRiNG, a resource-efficient and high-throughput system for generating multiple independent sequences of random numbers (MISRN) on FPGAs. Generating MISRN can be a time-consuming step in many applications such as numeric computation and approximate computing. Despite that decades of studies on generating a single sequence of random numbers on FPGAs have achieved very high throughput and high quality of randomness, existing MISRN approaches either suffer from heavy resource consumption or fail to achieve statistical independence among sequences. In contrast, ThundeRiNG resolves the dependence by using a resource-efficient decorrelator among multiple sequences, guaranteeing a high statistical quality of randomness. Moreover, ThundeRiNG develops a novel state sharing among a massive number of pseudo-random number generator instances on FPGAs. The experimental results show that ThundeRiNG successfully passes the widely used statistical test, TestU01, only consumes a constant number of DSPs (less than 1% of the FPGA resource capacity) for generating any number of sequences, and achieves a throughput of 655 billion random numbers per second. Compared to the state-of-the-art GPU library, ThundeRiNG demonstrates a 10.62x speedup on MISRN and delivers up to 9.15x performance and 26.63x power efficiency improvement on two applications (pi estimation and Monte Carlo option pricing). This work is open-sourced on Github at https://github.com/Xtra-Computing/ThundeRiNG.","PeriodicalId":73273,"journal":{"name":"ICS ... : proceedings of the ... ACM International Conference on Supercomputing. International Conference on Supercomputing","volume":"109 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80689103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Performance portable back-projection algorithms on CPUs: agnostic data locality and vectorization optimizations cpu上的性能便携反投影算法:不可知的数据位置和向量化优化
Peng Chen, M. Wahib, Xiao Wang, Shin'ichiro Takizawa, Takahiro Hirofuchi, Hirotaka Ogawa, S. Matsuoka
{"title":"Performance portable back-projection algorithms on CPUs: agnostic data locality and vectorization optimizations","authors":"Peng Chen, M. Wahib, Xiao Wang, Shin'ichiro Takizawa, Takahiro Hirofuchi, Hirotaka Ogawa, S. Matsuoka","doi":"10.1145/3447818.3460353","DOIUrl":"https://doi.org/10.1145/3447818.3460353","url":null,"abstract":"Computed Tomography (CT) is a key 3D imaging technology that fundamentally relies on the compute-intense back-projection operation to generate 3D volumes. GPUs are typically used for back-projection in production CT devices. However, with the rise of power-constrained micro-CT devices, and also the emergence of CPUs comparable in performance to GPUs, back-projection for CPUs could become favorable. Unlike GPUs, extracting parallelism for back-projection algorithms on CPUs is complex given that parallelism and locality are not explicitly defined and controlled by the programmer, as is the case when using CUDA for instance. We propose a collection of novel back-projection algorithms that reduce the arithmetic computation, robustly enable vectorization, enforce a regular memory access pattern, and maximize the data locality. We also implement the novel algorithms as efficient back-projection kernels that are performance portable over a wide range of CPUs. Performance evaluation using a variety of CPUs from different vendors and generations demonstrates that our back-projection implementation achieves on average 5.2 times speedup over the multi-threaded implementation of the most widely used, and optimized, open library. With a state‐of‐the‐art CPU, we reach performance that rivals top-performing GPUs.","PeriodicalId":73273,"journal":{"name":"ICS ... : proceedings of the ... ACM International Conference on Supercomputing. International Conference on Supercomputing","volume":"44 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72791736","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Partitioning sparse deep neural networks for scalable training and inference 用于可扩展训练和推理的稀疏深度神经网络分区
G. Demirci, H. Ferhatosmanoğlu
{"title":"Partitioning sparse deep neural networks for scalable training and inference","authors":"G. Demirci, H. Ferhatosmanoğlu","doi":"10.1145/3447818.3460372","DOIUrl":"https://doi.org/10.1145/3447818.3460372","url":null,"abstract":"The state-of-the-art deep neural networks (DNNs) have significant computational and data management requirements. The size of both training data and models continue to increase. Sparsification and pruning methods are shown to be effective in removing a large fraction of connections in DNNs. The resulting sparse networks present unique challenges to further improve the computational efficiency of training and inference in deep learning. Both the feedforward (inference) and backpropagation steps in stochastic gradient descent (SGD) algorithm for training sparse DNNs involve consecutive sparse matrix-vector multiplications (SpMVs). We first introduce a distributed-memory parallel SpMV-based solution for the SGD algorithm to improve its scalability. The parallelization approach is based on row-wise partitioning of weight matrices that represent neuron connections between consecutive layers. We then propose a novel hypergraph model for partitioning weight matrices to reduce the total communication volume and ensure computational load-balance among processors. Experiments performed on sparse DNNs demonstrate that the proposed solution is highly efficient and scalable. By utilizing the proposed matrix partitioning scheme, the performance of our solution is further improved significantly.","PeriodicalId":73273,"journal":{"name":"ICS ... : proceedings of the ... ACM International Conference on Supercomputing. International Conference on Supercomputing","volume":"29 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86092569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
FT-BLAS: a high performance BLAS implementation with online fault tolerance FT-BLAS:具有在线容错功能的高性能BLAS实现
Yujia Zhai, Elisabeth Giem, Quan Fan, Kai Zhao, Jinyang Liu, Zizhong Chen
{"title":"FT-BLAS: a high performance BLAS implementation with online fault tolerance","authors":"Yujia Zhai, Elisabeth Giem, Quan Fan, Kai Zhao, Jinyang Liu, Zizhong Chen","doi":"10.1145/3447818.3460364","DOIUrl":"https://doi.org/10.1145/3447818.3460364","url":null,"abstract":"Basic Linear Algebra Subprograms (BLAS) is a core library in scientific computing and machine learning. This paper presents FT-BLAS, a new implementation of BLAS routines that not only tolerates soft errors on the fly, but also provides comparable performance to modern state-of-the-art BLAS libraries on widely-used processors such as Intel Skylake and Cascade Lake. To accommodate the features of BLAS, which contains both memory-bound and computing-bound routines, we propose a hybrid strategy to incorporate fault tolerance into our brand-new BLAS implementation: duplicating computing instructions for memory-bound Level-1 and Level-2 BLAS routines and incorporating an Algorithm-Based Fault Tolerance mechanism for computing-bound Level-3 BLAS routines. Our high performance and low overhead are obtained from delicate assembly-level optimization and a kernel-fusion approach to the computing kernels. Experimental results demonstrate that FT-BLAS offers high reliability and high performance -- faster than Intel MKL, OpenBLAS, and BLIS by up to 3.50%, 22.14% and 21.70%, respectively, for routines spanning all three levels of BLAS we benchmarked, even under hundreds of errors injected per minute.","PeriodicalId":73273,"journal":{"name":"ICS ... : proceedings of the ... ACM International Conference on Supercomputing. International Conference on Supercomputing","volume":"21 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72639019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
ClickTrain: efficient and accurate end-to-end deep learning training via fine-grained architecture-preserving pruning ClickTrain:通过细粒度架构保留修剪进行高效准确的端到端深度学习训练
Chengming Zhang, Geng Yuan, Wei Niu, Jiannan Tian, Sian Jin, Donglin Zhuang, Zhe Jiang, Yanzhi Wang, Bin Ren, S. Song, Dingwen Tao
{"title":"ClickTrain: efficient and accurate end-to-end deep learning training via fine-grained architecture-preserving pruning","authors":"Chengming Zhang, Geng Yuan, Wei Niu, Jiannan Tian, Sian Jin, Donglin Zhuang, Zhe Jiang, Yanzhi Wang, Bin Ren, S. Song, Dingwen Tao","doi":"10.1145/3447818.3459988","DOIUrl":"https://doi.org/10.1145/3447818.3459988","url":null,"abstract":"Convolutional neural networks (CNNs) are becoming increasingly deeper, wider, and non-linear because of the growing demand on prediction accuracy and analysis quality. The wide and deep CNNs, however, require a large amount of computing resources and processing time. Many previous works have studied model pruning to improve inference performance, but little work has been done for effectively reducing training cost. In this paper, we propose ClickTrain: an efficient and accurate end-to-end training and pruning framework for CNNs. Different from the existing pruning-during-training work, ClickTrain provides higher model accuracy and compression ratio via fine-grained architecture-preserving pruning. By leveraging pattern-based pruning with our proposed novel accurate weight importance estimation, dynamic pattern generation and selection, and compiler-assisted computation optimizations, ClickTrain generates highly accurate and fast pruned CNN models for direct deployment without any time overhead, compared with the baseline training. ClickTrain also reduces the end-to-end time cost of the state-of-the-art pruning-after-training method by up to 2.3x with comparable accuracy and compression ratio. Moreover, compared with the state-of-the-art pruning-during-training approach, ClickTrain provides significant improvements both accuracy and compression ratio on the tested CNN models and datasets, under similar limited training time.","PeriodicalId":73273,"journal":{"name":"ICS ... : proceedings of the ... ACM International Conference on Supercomputing. International Conference on Supercomputing","volume":"57 4 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89734920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
Task-graph scheduling extensions for efficient synchronization and communication 任务图调度扩展用于有效的同步和通信
Seonmyeong Bak, Oscar R. Hernandez, M. Gates, P. Luszczek, Vivek Sarkar
{"title":"Task-graph scheduling extensions for efficient synchronization and communication","authors":"Seonmyeong Bak, Oscar R. Hernandez, M. Gates, P. Luszczek, Vivek Sarkar","doi":"10.1145/3447818.3461616","DOIUrl":"https://doi.org/10.1145/3447818.3461616","url":null,"abstract":"Task graphs have been studied for decades as a foundation for scheduling irregular parallel applications and incorporated in many programming models including OpenMP. While many high-performance parallel libraries are based on task graphs, they also have additional scheduling requirements, such as synchronization within inner levels of data parallelism and internal blocking communications. In this paper, we extend task-graph scheduling to support efficient synchronization and communication within tasks. Compared to past work, our scheduler avoids deadlock and oversubscription of worker threads, and refines victim selection to increase the overlap of sibling tasks. To the best of our knowledge, our approach is the first to combine gang-scheduling and work-stealing in a single runtime. Our approach has been evaluated on the SLATE high-performance linear algebra library. Relative to the LLVM OMP runtime, our runtime demonstrates performance improvements of up to 13.82%, 15.2%, and 36.94% for LU, QR, and Cholesky, respectively, evaluated across different configurations related to matrix size, number of nodes, and use of CPUs vs GPUs.","PeriodicalId":73273,"journal":{"name":"ICS ... : proceedings of the ... ACM International Conference on Supercomputing. International Conference on Supercomputing","volume":"34 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87715821","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信