FT-BLAS: a high performance BLAS implementation with online fault tolerance

Yujia Zhai, Elisabeth Giem, Quan Fan, Kai Zhao, Jinyang Liu, Zizhong Chen
{"title":"FT-BLAS: a high performance BLAS implementation with online fault tolerance","authors":"Yujia Zhai, Elisabeth Giem, Quan Fan, Kai Zhao, Jinyang Liu, Zizhong Chen","doi":"10.1145/3447818.3460364","DOIUrl":null,"url":null,"abstract":"Basic Linear Algebra Subprograms (BLAS) is a core library in scientific computing and machine learning. This paper presents FT-BLAS, a new implementation of BLAS routines that not only tolerates soft errors on the fly, but also provides comparable performance to modern state-of-the-art BLAS libraries on widely-used processors such as Intel Skylake and Cascade Lake. To accommodate the features of BLAS, which contains both memory-bound and computing-bound routines, we propose a hybrid strategy to incorporate fault tolerance into our brand-new BLAS implementation: duplicating computing instructions for memory-bound Level-1 and Level-2 BLAS routines and incorporating an Algorithm-Based Fault Tolerance mechanism for computing-bound Level-3 BLAS routines. Our high performance and low overhead are obtained from delicate assembly-level optimization and a kernel-fusion approach to the computing kernels. Experimental results demonstrate that FT-BLAS offers high reliability and high performance -- faster than Intel MKL, OpenBLAS, and BLIS by up to 3.50%, 22.14% and 21.70%, respectively, for routines spanning all three levels of BLAS we benchmarked, even under hundreds of errors injected per minute.","PeriodicalId":73273,"journal":{"name":"ICS ... : proceedings of the ... ACM International Conference on Supercomputing. International Conference on Supercomputing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICS ... : proceedings of the ... ACM International Conference on Supercomputing. International Conference on Supercomputing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3447818.3460364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Basic Linear Algebra Subprograms (BLAS) is a core library in scientific computing and machine learning. This paper presents FT-BLAS, a new implementation of BLAS routines that not only tolerates soft errors on the fly, but also provides comparable performance to modern state-of-the-art BLAS libraries on widely-used processors such as Intel Skylake and Cascade Lake. To accommodate the features of BLAS, which contains both memory-bound and computing-bound routines, we propose a hybrid strategy to incorporate fault tolerance into our brand-new BLAS implementation: duplicating computing instructions for memory-bound Level-1 and Level-2 BLAS routines and incorporating an Algorithm-Based Fault Tolerance mechanism for computing-bound Level-3 BLAS routines. Our high performance and low overhead are obtained from delicate assembly-level optimization and a kernel-fusion approach to the computing kernels. Experimental results demonstrate that FT-BLAS offers high reliability and high performance -- faster than Intel MKL, OpenBLAS, and BLIS by up to 3.50%, 22.14% and 21.70%, respectively, for routines spanning all three levels of BLAS we benchmarked, even under hundreds of errors injected per minute.
FT-BLAS:具有在线容错功能的高性能BLAS实现
基本线性代数子程序(BLAS)是科学计算和机器学习的核心库。本文介绍了FT-BLAS,一种新的BLAS例程实现,它不仅可以容忍动态中的软错误,而且还提供了与广泛使用的处理器(如Intel Skylake和Cascade Lake)上的现代最先进的BLAS库相当的性能。为了适应BLAS既包含内存绑定例程又包含计算绑定例程的特点,我们提出了一种混合策略,将容错融入到我们全新的BLAS实现中:为内存绑定的一级和二级BLAS例程复制计算指令,为计算绑定的三级BLAS例程引入基于算法的容错机制。我们的高性能和低开销是通过精细的汇编级优化和对计算内核的核融合方法获得的。实验结果表明,FT-BLAS具有高可靠性和高性能-即使在每分钟注入数百个错误的情况下,对于我们基准测试的所有三个级别的BLAS例程,FT-BLAS也比英特尔MKL, OpenBLAS和BLIS分别快3.50%,22.14%和21.70%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信