{"title":"Genome editing technology and applications with the type I CRISPR system","authors":"Kazuto Yoshimi , Tomoji Mashimo","doi":"10.1016/j.ggedit.2022.100013","DOIUrl":"10.1016/j.ggedit.2022.100013","url":null,"abstract":"<div><p>Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas systems, which are representative genome editing technologies, are classified into class 1 and class 2 in terms of evolutionary biology and are further classified into several subtypes. Class 2 CRISPR systems, including type II Cas9 and type V Cas12a, are the most commonly used for genome editing in eukaryotic cells, while type I CRISPR systems within Class 1 are also becoming available. Type I CRISPR recognizes longer target sequences than CRISPR-Cas9 and can induce large deletion mutations of several kilobases. These features demonstrate its potential as a novel and unique genome editing tool that can induce genetic disruption safely and reliably. Thus, it is expected to be utilized for gene therapy and industrial applications. Recently, the DNA cleavage mechanism of type I CRISPR has also revealed details from protein-complex analyses with X-ray crystallography, cryo-electron microscopy, and high-speed atomic force microscopy. The single-strand DNA trans-cleavage activity of type I CRISPR, called collateral activity, has broadened the potential application for CRISPR diagnostics, especially in the development of point-of-care testing methods for COVID-19. In this review, we present an overview of the type I CRISPR system, its application to genome editing, and genetic diagnosis using CRISPR-Cas3.</p></div>","PeriodicalId":73137,"journal":{"name":"Gene and genome editing","volume":"3 ","pages":"Article 100013"},"PeriodicalIF":0.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266638802200003X/pdfft?md5=8eab8b309522c5e7bbddba69bc0770e0&pid=1-s2.0-S266638802200003X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43940303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Genome editing in mice and its application to the study of spermatogenesis","authors":"Seiya Oura , Hideto Mori , Masahito Ikawa","doi":"10.1016/j.ggedit.2022.100014","DOIUrl":"10.1016/j.ggedit.2022.100014","url":null,"abstract":"<div><p>Gene modification technology has long been beneficial for unraveling the mystery of biological phenomena. Thus, the advent of the clustered regularly interspaced short palindromic repeats (CRISPR)/ CRISPR-associated (Cas) 9 system was a game-changer in biological research because of its efficiency and simplicity of design. This review article first describes a brief guideline of gRNA design and the methods to incorporate the CRISPR/Cas9 system into zygotes. Then, we will also discuss the application of this technology to the study of male reproductive biology, including knock-out (KO) phenotypical screening of genes expressed in the male reproductive tissues.</p></div>","PeriodicalId":73137,"journal":{"name":"Gene and genome editing","volume":"3 ","pages":"Article 100014"},"PeriodicalIF":0.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666388022000041/pdfft?md5=c8b36d0f294a2356a30167622ac7c601&pid=1-s2.0-S2666388022000041-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44631995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Development of DNA Ink & DNA Barcoding Technology on Practical Tracking & Authenticity Detection of Pharmaceutical Ingredients","authors":"Buket Budaklar, Berranur Sert, Gamze Gülden, Cihan Tastan","doi":"10.29228/genediting.66978","DOIUrl":"https://doi.org/10.29228/genediting.66978","url":null,"abstract":"","PeriodicalId":73137,"journal":{"name":"Gene and genome editing","volume":"28 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76956717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Gene editing tools and the treatment of cystic fibrosis disease","authors":"Heliya Ashouri","doi":"10.29228/genediting.63292","DOIUrl":"https://doi.org/10.29228/genediting.63292","url":null,"abstract":"","PeriodicalId":73137,"journal":{"name":"Gene and genome editing","volume":"11 suppl_1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86761290","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cemre Can İnci, Gamze Gülden, Berranur Sert, Cihan Tastan
{"title":"The CRISPR-Cas12 SHERLOCK System Can Identify HIV","authors":"Cemre Can İnci, Gamze Gülden, Berranur Sert, Cihan Tastan","doi":"10.29228/genediting.66981","DOIUrl":"https://doi.org/10.29228/genediting.66981","url":null,"abstract":"","PeriodicalId":73137,"journal":{"name":"Gene and genome editing","volume":"67 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89614023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"TALE and TALEN genome editing technologies","authors":"Sebastian Becker, Jens Boch","doi":"10.1016/j.ggedit.2021.100007","DOIUrl":"10.1016/j.ggedit.2021.100007","url":null,"abstract":"<div><p>TALEN were the first easy-to-use genome editing technology and sparked the genome editing revolution. Their application in multiple species brought targeted mutagenesis to the attention of scientists worldwide. Key breakthrough successes of genome editing have since been achieved using TALEN, among these, the first commercialization of an edited crop and the first human cured from cancer. TALEN have since been largely replaced by the CRISPR technologies which are somewhat easier to build, much easier to multiplex, and have spawned multiple derived techniques. Nevertheless, the flexible and precise positioning of TALEN is unmatched, and thus they have continued to evolve to new functionalities. Here, we assemble essential facts, design guidelines as well as important past and exciting novel developments.</p></div>","PeriodicalId":73137,"journal":{"name":"Gene and genome editing","volume":"2 ","pages":"Article 100007"},"PeriodicalIF":0.0,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ggedit.2021.100007","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"113115832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maria Kuhn , António J. Santinha , Randall J. Platt
{"title":"Moving from in vitro to in vivo CRISPR screens","authors":"Maria Kuhn , António J. Santinha , Randall J. Platt","doi":"10.1016/j.ggedit.2021.100008","DOIUrl":"https://doi.org/10.1016/j.ggedit.2021.100008","url":null,"abstract":"<div><p>Clustered regularly interspaced short palindromic repeats (CRISPR) screens emerged as the gold standard technology in genetic screening in recent years. Most CRISPR screens are conducted in vitro, although current technologies fail to completely recapitulate the in vivo physiological environment. Direct in vivo screening - where cells are targeted within their natural niche - is emerging as a powerful approach to unravel biological processes in intact tissues and organs, taking into account complex cellular interactions, immune response, extracellular matrix, and tissue architecture. Several recent studies have demonstrated the capacity of in vivo screens to identify unique genetic dependencies left uncovered by in vitro screens. Together with new single cell readout techniques, in vivo CRISPR screens will continue to fuel progress towards identifying genetic elements controlling development, health, and disease.</p></div>","PeriodicalId":73137,"journal":{"name":"Gene and genome editing","volume":"2 ","pages":"Article 100008"},"PeriodicalIF":0.0,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ggedit.2021.100008","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136433584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Genome editing of therapeutic T cells","authors":"Waseem Qasim","doi":"10.1016/j.ggedit.2021.100010","DOIUrl":"10.1016/j.ggedit.2021.100010","url":null,"abstract":"<div><p>The potential of engineered TCRαβ T cells as potent mediators of leukemic clearance has been demonstrated in clinical trials, and authorised therapies are being deployed against B cell malignancies in particular. While most applications have relied on harvest and manipulation of autologous lymphocytes, the emerging application of genome editing technology has demonstrated that allogeneic TCRαβ cells can be engineered to overcome Human Leukocyte Antigen (HLA) barriers and provides a route to more cost effective and widely accessible ‘off-the-shelf’ therapies. Genome editing also offers the prospect of addressing other hurdles such as shared-antigen expression and has been applied to direct site-specific transgene integration, for improved transcriptional regulation and function.</p></div>","PeriodicalId":73137,"journal":{"name":"Gene and genome editing","volume":"2 ","pages":"Article 100010"},"PeriodicalIF":0.0,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ggedit.2021.100010","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39780167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}