Frontiers in toxicologyPub Date : 2024-09-02eCollection Date: 2024-01-01DOI: 10.3389/ftox.2024.1380485
Xinwen Zhang, Helen Ngo, Karen Wagner, Xuetong Fan, Changqing Wu
{"title":"Developmental toxicity and estrogenic activity of antimicrobial phenolic-branched fatty acids using <i>in silico</i> simulations and <i>in vivo</i> and <i>in vitro</i> bioassay.","authors":"Xinwen Zhang, Helen Ngo, Karen Wagner, Xuetong Fan, Changqing Wu","doi":"10.3389/ftox.2024.1380485","DOIUrl":"https://doi.org/10.3389/ftox.2024.1380485","url":null,"abstract":"<p><p>Due to the growing safety and environmental concerns associated with biocides, phenolic-soy branched chain fatty acids (phenolic-soy BCFAs) are synthesized as new bio-based antimicrobial agents. Safety evaluation is essential before the wide adoption of these new antimicrobial products. This study was initiated to evaluate the safety of four phenolic-soy BCFAs (with phenol, thymol, carvacrol, or creosote branches). Methyl-branched iso-oleic acid, phenol, and creosote were included in the study as controls. <i>In silico</i> toxicity simulation tools predicted that the phenolic BCFAs had much higher toxicities to aquatic organisms than free phenolics did, while the opposite was predicted for rats. The developmental toxicity of four phenolic-soy BCFAs was assessed using an <i>in vivo</i> chicken embryonic assay. Results showed that creosote-soy BCFA had much lower mortality rates than creosote at the same dosages. Additionally, creosote-soy BCFA and methyl-branched iso-oleic acid induced minimal estrogenic activity in the concentration range of 10 nM - 1 µM. Carvacrol-soy BCFA treatments significantly increased (<i>p</i> < 0.05) oxidative stress levels with higher thiobarbituric acid reactive substances in the livers of chicken embryos. Altogether, the phenolic-soy BCFAs, especially creosote-soy BCFA, reported in this study are potentially promising and safer bio-based antimicrobial products.</p>","PeriodicalId":73111,"journal":{"name":"Frontiers in toxicology","volume":"6 ","pages":"1380485"},"PeriodicalIF":3.6,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11402896/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142302561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Frontiers in toxicologyPub Date : 2024-08-26eCollection Date: 2024-01-01DOI: 10.3389/ftox.2024.1403031
John P Prybylski, Olivia Jastrzemski, Michael Jay
{"title":"The effect of iron status on gadolinium deposition in the rat brain: mechanistic implications.","authors":"John P Prybylski, Olivia Jastrzemski, Michael Jay","doi":"10.3389/ftox.2024.1403031","DOIUrl":"https://doi.org/10.3389/ftox.2024.1403031","url":null,"abstract":"<p><p><b>Introduction:</b> Sites associated with gadolinium (Gd) deposition in the brain (e.g., the globus pallidus) are known to contain high concentrations of ferric iron. There is considerable debate over the mechanism of Gd deposition in the brain. The role of iron transport mechanisms in Gd deposition has not been determined. Thus, we seek to identify if Gd deposition can be controlled by modifying iron exposure. <b>Methods:</b> Female Sprague-Dawley rats were given diets with controlled iron levels at 2-6 ppm, 6 ppt (20 g/kg Fe carbonyl) or 48 ppm for 3 weeks to induce iron deficiency, overload or normalcy. They were kept on those diets while receiving a cumulative 10 mmol/kg dose of gadodiamide intravenously over 2 weeks, then left to washout gadodiamide for 3 days or 3 weeks before tissues were harvested. Gd concentrations in tissues were analyzed by ICP-MS. <b>Results:</b> There were no significant effect of dietary iron and total Gd concentrations in the organs, but there was a significant effect of iron status on Gd distribution in the brain. For the 3-week washout cohort, there was a non-significant trend of increasing total brain deposition and decreasing dietary iron, and about 4-fold more Gd in the olfactory bulbs of the low iron group compared to the other groups. Significant brain accumulation was observed in the low iron group total brain Gd in the 3-week washout group relative to the 3-day washout group and no accumulation was observed in other tissues. There was a strong negative correlation between femur Gd concentrations and concentrations in other organs when stratifying by dietary iron. <b>Discussion:</b> Gd brain deposition from linear Gd-based contrast agents (GBCAs) are dependent upon iron status, likely through variable transferrin saturation. This iron dependence appears to be associated with redistribution of peripheral deposited Gd (e.g., in the bone) into the brain.</p>","PeriodicalId":73111,"journal":{"name":"Frontiers in toxicology","volume":"6 ","pages":"1403031"},"PeriodicalIF":3.6,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11381947/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142302563","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Frontiers in toxicologyPub Date : 2024-08-22eCollection Date: 2024-01-01DOI: 10.3389/ftox.2024.1402630
Joy Ku, Prashanth Asuri
{"title":"Stem cell-based approaches for developmental neurotoxicity testing.","authors":"Joy Ku, Prashanth Asuri","doi":"10.3389/ftox.2024.1402630","DOIUrl":"10.3389/ftox.2024.1402630","url":null,"abstract":"<p><p>Neurotoxicants are substances that can lead to adverse structural or functional effects on the nervous system. These can be chemical, biological, or physical agents that can cross the blood brain barrier to damage neurons or interfere with complex interactions between the nervous system and other organs. With concerns regarding social policy, public health, and medicine, there is a need to ensure rigorous testing for neurotoxicity. While the most common neurotoxicity tests involve using animal models, a shift towards stem cell-based platforms can potentially provide a more biologically accurate alternative in both clinical and pharmaceutical research. With this in mind, the objective of this article is to review both current technologies and recent advancements in evaluating neurotoxicants using stem cell-based approaches, with an emphasis on developmental neurotoxicants (DNTs) as these have the most potential to lead to irreversible critical damage on brain function. In the next section, attempts to develop novel predictive model approaches for the study of both neural cell fate and developmental neurotoxicity are discussed. Finally, this article concludes with a discussion of the future use of <i>in silico</i> methods within developmental neurotoxicity testing, and the role of regulatory bodies in promoting advancements within the space.</p>","PeriodicalId":73111,"journal":{"name":"Frontiers in toxicology","volume":"6 ","pages":"1402630"},"PeriodicalIF":3.6,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11374538/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142141919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Frontiers in toxicologyPub Date : 2024-08-20eCollection Date: 2024-01-01DOI: 10.3389/ftox.2024.1476284
Martina Iulini, Monday Ogaba Ogese
{"title":"Editorial: Over and under the skin: how our habits can influence cutaneous toxicity.","authors":"Martina Iulini, Monday Ogaba Ogese","doi":"10.3389/ftox.2024.1476284","DOIUrl":"https://doi.org/10.3389/ftox.2024.1476284","url":null,"abstract":"","PeriodicalId":73111,"journal":{"name":"Frontiers in toxicology","volume":"6 ","pages":"1476284"},"PeriodicalIF":3.6,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11369771/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142127512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Frontiers in toxicologyPub Date : 2024-08-16eCollection Date: 2024-01-01DOI: 10.3389/ftox.2024.1374866
Irene Lee, Ava C Knickerbocker, Charlotte R Depew, Elizabeth L Martin, Jocelyn Dicent, Gary W Miller, Meghan L Bucher
{"title":"Effect of altered production and storage of dopamine on development and behavior in <i>C. elegans</i>.","authors":"Irene Lee, Ava C Knickerbocker, Charlotte R Depew, Elizabeth L Martin, Jocelyn Dicent, Gary W Miller, Meghan L Bucher","doi":"10.3389/ftox.2024.1374866","DOIUrl":"10.3389/ftox.2024.1374866","url":null,"abstract":"<p><strong>Introduction: </strong>The nematode, <i>Caenorhabditis elegans</i> (<i>C. elegans</i>), is an advantageous model for studying developmental toxicology due to its well-defined developmental stages and homology to humans. It has been established that across species, dopaminergic neurons are highly vulnerable to neurotoxicant exposure, resulting in developmental neuronal dysfunction and age-induced degeneration. <i>C. elegans</i>, with genetic perturbations in dopamine system proteins, can provide insight into the mechanisms of dopaminergic neurotoxicants. In this study, we present a comprehensive analysis on the effect of gene mutations in dopamine-related proteins on body size, development, and behavior in <i>C. elegans.</i></p><p><strong>Methods: </strong>We studied <i>C. elegans</i> that lack the ability to sequester dopamine (OK411) and that overproduce dopamine (UA57) and a novel strain (MBIA) generated by the genetic crossing of OK411 and UA57, which both lack the ability to sequester dopamine into vesicles and, additionally, endogenously overproduce dopamine. The MBIA strain was generated to address the hypothesis that an endogenous increase in the production of dopamine can rescue deficits caused by a lack of vesicular dopamine sequestration. These strains were analyzed for body size, developmental stage, reproduction, egg laying, motor behaviors, and neuronal health utilizing multiple methods.</p><p><strong>Results: </strong>Our results further implicate proper dopamine synthesis and sequestration in the regulation of <i>C. elegans</i> body size, development through larval stages into gravid adulthood, and motor functioning. Furthermore, our analyses demonstrate that body size in terms of length is distinct from the developmental stage as fully developed gravid adult <i>C. elegans</i> with disruptions in the dopamine system have decreased body lengths. Thus, body size should not be used as a proxy for the developmental stage when designing experiments.</p><p><strong>Discussion: </strong>Our results provide additional evidence that the dopamine system impacts the development, growth, and reproduction in <i>C. elegans</i>. Furthermore, our data suggest that endogenously increasing the production of dopamine mitigates deficits in <i>C. elegans</i> lacking the ability to package dopamine into synaptic vesicles. The novel strain, MBIA, and novel analyses of development and reproduction presented here can be utilized in developmental neurotoxicity experiments.</p>","PeriodicalId":73111,"journal":{"name":"Frontiers in toxicology","volume":"6 ","pages":"1374866"},"PeriodicalIF":3.6,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11363549/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142115665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Frontiers in toxicologyPub Date : 2024-08-16eCollection Date: 2024-01-01DOI: 10.3389/ftox.2024.1438061
Alyssa M Hohman, Rachel M Sorensen, Boris Jovanovic, Elizabeth M McNeill
{"title":"The heart of plastic: utilizing the <i>Drosophila</i> model to investigate the effects of micro/nanoplastics on heart function.","authors":"Alyssa M Hohman, Rachel M Sorensen, Boris Jovanovic, Elizabeth M McNeill","doi":"10.3389/ftox.2024.1438061","DOIUrl":"10.3389/ftox.2024.1438061","url":null,"abstract":"<p><p>Microplastics (MPs) and nanoplastics (NPs) have increasingly been found in the environment. Until recently, most MPs/NPs toxicological research has been done in aquatic systems resulting in a gap in knowledge regarding terrestrial systems. Plastics have been shown to enter the circulatory system of humans, and can accumulate within organs, little is known about the effect this has on health. Heart disease is the leading cause of death globally, so it's critical to understand the possible impacts MPs/NPs have on the heart. The <i>Drosophila</i> model has been growing in popularity within the toxicology field, it allows for affordable and rapid research on the impacts of a variety of toxins, including plastics. Some research has examined toxicological effects of plastics on the fly, evaluating the effects on mortality, fecundity, development, and locomotion. However, no one has studied the effects on the <i>Drosophila</i> heart. We utilize the <i>Drosophila</i> model to identify the potential effects of oral exposure to polystyrene MPs (1 µm in diameter) and NPs (0.05 µm in diameter) particles on heart function. Flies were exposed to 1.4 × 10<sup>11</sup> particles/d/kg of larvae for MPs and 1.2 × 10<sup>18</sup> particles/d/kg of larvae for NPs from egg to pupal eclosion. Heart function was then analyzed utilizing semi-intact dissections and Semi-automatic Optic Heartbeat Analysis software (SOHA). Following exposure to MPs and NPs we see sexually dimorphic changes to heart size and function. This study highlights the importance of additional <i>Drosophila</i> MPs/NPs research to identify the molecular mechanisms behind these changes.</p>","PeriodicalId":73111,"journal":{"name":"Frontiers in toxicology","volume":"6 ","pages":"1438061"},"PeriodicalIF":3.6,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11362071/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142115680","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Frontiers in toxicologyPub Date : 2024-08-13eCollection Date: 2024-01-01DOI: 10.3389/ftox.2024.1444024
Maricel V Maffini, Laura N Vandenberg
{"title":"Science evolves but outdated testing and static risk management in the US delay protection to human health.","authors":"Maricel V Maffini, Laura N Vandenberg","doi":"10.3389/ftox.2024.1444024","DOIUrl":"10.3389/ftox.2024.1444024","url":null,"abstract":"","PeriodicalId":73111,"journal":{"name":"Frontiers in toxicology","volume":"6 ","pages":"1444024"},"PeriodicalIF":3.6,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11347445/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142082819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Frontiers in toxicologyPub Date : 2024-08-12eCollection Date: 2024-01-01DOI: 10.3389/ftox.2024.1376587
Amy Cunningham, Martin Kirk, Emily Hong, Jing Yang, Tamara Howard, Adrian Brearley, Angelica Sáenz-Trevizo, Jacob Krawchuck, John Watt, Ian Henderson, Karol Dokladny, Joshua DeAguero, G Patricia Escobar, Brent Wagner
{"title":"The safety of magnetic resonance imaging contrast agents.","authors":"Amy Cunningham, Martin Kirk, Emily Hong, Jing Yang, Tamara Howard, Adrian Brearley, Angelica Sáenz-Trevizo, Jacob Krawchuck, John Watt, Ian Henderson, Karol Dokladny, Joshua DeAguero, G Patricia Escobar, Brent Wagner","doi":"10.3389/ftox.2024.1376587","DOIUrl":"10.3389/ftox.2024.1376587","url":null,"abstract":"<p><p>Gadolinium-based contrast agents are increasingly used in clinical practice. While these pharmaceuticals are verified causal agents in nephrogenic systemic fibrosis, there is a growing body of literature supporting their role as causal agents in symptoms associated with gadolinium exposure after intravenous use and encephalopathy following intrathecal administration. Gadolinium-based contrast agents are multidentate organic ligands that strongly bind the metal ion to reduce the toxicity of the metal. The notion that cationic gadolinium dissociates from these chelates and causes the disease is prevalent among patients and providers. We hypothesize that non-ligand-bound (soluble) gadolinium will be exceedingly low in patients. Soluble, ionic gadolinium is not likely to be the initial step in mediating any disease. The Kidney Institute of New Mexico was the first to identify gadolinium-rich nanoparticles in skin and kidney tissues from magnetic resonance imaging contrast agents in rodents. In 2023, they found similar nanoparticles in the kidney cells of humans with normal renal function, likely from contrast agents. We suspect these nanoparticles are the mediators of chronic toxicity from magnetic resonance imaging contrast agents. This article explores associations between gadolinium contrast and adverse health outcomes supported by clinical reports and rodent models.</p>","PeriodicalId":73111,"journal":{"name":"Frontiers in toxicology","volume":"6 ","pages":"1376587"},"PeriodicalIF":3.6,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11345262/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142074676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Frontiers in toxicologyPub Date : 2024-08-06eCollection Date: 2024-01-01DOI: 10.3389/ftox.2024.1397477
S Spulber, L Reis, P Alexe, S Ceccatelli
{"title":"Decreased activity in zebrafish larvae exposed to glyphosate-based herbicides during development-potential mediation by glucocorticoid receptor.","authors":"S Spulber, L Reis, P Alexe, S Ceccatelli","doi":"10.3389/ftox.2024.1397477","DOIUrl":"10.3389/ftox.2024.1397477","url":null,"abstract":"<p><p>Glyphosate-based herbicides (GBH) are a widely used group of pesticides that have glyphosate (GLY) as main active compound and are used to control a wide range of weeds. Experimental and epidemiological studies point to neurotoxicity and endocrine disruption as main toxic effects. The aim of this study was to investigate the effects of developmental exposure to GLY and GBH on locomotor behavior, and the possible contribution of GR-mediated signaling. We used zebrafish (<i>Danio rerio</i>) larvae in a continuous exposure regimen to GLY or GBH in the rearing medium. Alongside TL wildtype, we used a mutant line carrying a mutation in the GR which prevents the GR from binding to DNA (gr<sup>s357</sup>), as well as a transgenic strain expressing a variant of enhanced green fluorescent protein (d4eGFP) controlled by a promoter carrying multiple GR response elements (SR4G). We found that acute exposure to GBH, but not GLY, activates GR-mediated signaling. Using a continuous developmental exposure regime, we show that wildtype larvae exposed to GBH display decreased spontaneous activity and attenuated response to environmental stimuli, a pattern of alteration similar to the one observed in gr<sup>s357</sup> mutant larvae. In addition, developmental exposure to GBH has virtually no effects on the behavior of gr<sup>s357</sup> mutant larvae. Taken together, our data indicate that developmental exposure to GBH has more pronounced effects than GLY on behavior at 5 dpf, and that interference with GR-mediated signaling may have a relevant contribution.</p>","PeriodicalId":73111,"journal":{"name":"Frontiers in toxicology","volume":"6 ","pages":"1397477"},"PeriodicalIF":3.6,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11333450/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142010034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Frontiers in toxicologyPub Date : 2024-08-05eCollection Date: 2024-01-01DOI: 10.3389/ftox.2024.1416708
Triana Acevedo-Huergo, Jonathan Sánchez-Yépez, María Soledad Mendoza-Trejo, Isela Hernández-Plata, Magda Giordano, Verónica Mireya Rodríguez
{"title":"Hypoactivity and neurochemical alterations in the basal ganglia of female Sprague-Dawley rats after repeated exposure to atrazine.","authors":"Triana Acevedo-Huergo, Jonathan Sánchez-Yépez, María Soledad Mendoza-Trejo, Isela Hernández-Plata, Magda Giordano, Verónica Mireya Rodríguez","doi":"10.3389/ftox.2024.1416708","DOIUrl":"10.3389/ftox.2024.1416708","url":null,"abstract":"<p><p>The herbicide atrazine (ATR) has been one of the most widely used herbicides worldwide. However, due to its indiscriminate use, it has been considered an environmental contaminant. Several studies have classified ATR as an endocrine disruptor, and it has been found to have neurotoxic effects on behavior, along with alterations in the dopaminergic, GABAergic, and glutamatergic systems in the basal ganglia of male rodents. These findings suggest that these neurotransmitter systems are targets of this herbicide. However, there are no studies evaluating the neurotoxicity of ATR in female rodents. Our study aimed to assess the effects of repeated IP injections of 100 mg ATR/kg or a vehicle every other day for 2 weeks (six injections) on the locomotor activity, content of monoamines, GABA, glutamate, and glutamine in the striatum, nucleus accumbens, ventral midbrain, and prefrontal cortex, and tyrosine hydroxylase (TH) protein levels in striatum and nucleus accumbens of female rats. Repeated 100 mg ATR/kg injections immediately decreased all the locomotor activity parameters evaluated, and such hypoactivity persisted for at least 48 h after the last ATR administration. The ATR administration increased dopamine and DOPAC content in the nucleus accumbens and the dopamine and DOPAC and serotonin and 5-HIAA content in the ventral midbrain. In contrast, the TH protein levels in the striatum and nucleus accumbens were similar between groups. Meanwhile, GABA, glutamine, and glutamate levels remained unaltered in all brain regions evaluated. The observed behavioral alterations could be associated with the monoamine changes presented by the rats. These data reveal that the nucleus accumbens and ventral midbrain are susceptible to repeated ATR exposure in female rats.</p>","PeriodicalId":73111,"journal":{"name":"Frontiers in toxicology","volume":"6 ","pages":"1416708"},"PeriodicalIF":3.6,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11330890/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142006083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}