Vasileia Kotoula, Jennifer W Evans, Claire E Punturieri, Carlos A Zarate
{"title":"Review: The use of functional magnetic resonance imaging (fMRI) in clinical trials and experimental research studies for depression.","authors":"Vasileia Kotoula, Jennifer W Evans, Claire E Punturieri, Carlos A Zarate","doi":"10.3389/fnimg.2023.1110258","DOIUrl":"https://doi.org/10.3389/fnimg.2023.1110258","url":null,"abstract":"<p><p>Functional magnetic resonance imaging (fMRI) is a non-invasive technique that can be used to examine neural responses with and without the use of a functional task. Indeed, fMRI has been used in clinical trials and pharmacological research studies. In mental health, it has been used to identify brain areas linked to specific symptoms but also has the potential to help identify possible treatment targets. Despite fMRI's many advantages, such findings are rarely the primary outcome measure in clinical trials or research studies. This article reviews fMRI studies in depression that sought to assess the efficacy and mechanism of action of compounds with antidepressant effects. Our search results focused on selective serotonin reuptake inhibitors (SSRIs), the most commonly prescribed treatments for depression and ketamine, a fast-acting antidepressant treatment. Normalization of amygdala hyperactivity in response to negative emotional stimuli was found to underlie successful treatment response to SSRIs as well as ketamine, indicating a potential common pathway for both conventional and fast-acting antidepressants. Ketamine's rapid antidepressant effects make it a particularly useful compound for studying depression with fMRI; its effects on brain activity and connectivity trended toward normalizing the increases and decreases in brain activity and connectivity associated with depression. These findings highlight the considerable promise of fMRI as a tool for identifying treatment targets in depression. However, additional studies with improved methodology and study design are needed before fMRI findings can be translated into meaningful clinical trial outcomes.</p>","PeriodicalId":73094,"journal":{"name":"Frontiers in neuroimaging","volume":"2 ","pages":"1110258"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10406217/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9956735","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Eva Poliakova, Amy L Conrad, Kelly M Schieltz, Matthew J O'Brien
{"title":"Using fNIRS to evaluate ADHD medication effects on neuronal activity: A systematic literature review.","authors":"Eva Poliakova, Amy L Conrad, Kelly M Schieltz, Matthew J O'Brien","doi":"10.3389/fnimg.2023.1083036","DOIUrl":"10.3389/fnimg.2023.1083036","url":null,"abstract":"<p><strong>Background: </strong>Functional near infrared spectroscopy (fNIRS) is a relatively non-invasive and inexpensive functional neuroimaging technique that has shown promise as a method for understanding the differences in neuronal activity associated with various neurodevelopmental conditions, including ADHD. Additionally, fNIRS has been suggested as a possible tool to understand the impact of psychotropic medications on brain activity in individuals with ADHD, but this approach is still in its infancy.</p><p><strong>Objective: </strong>The purpose of this systematic literature review was to synthesize the extant research literature on the use of fNIRS to assess the effects of ADHD medications on brain activity in children and adolescents with ADHD.</p><p><strong>Methods: </strong>A literature search following Preferred Reporting Items for Systematic Literature Reviews and Meta-Analyses (PRISMA) guidelines was conducted for peer-reviewed articles related to ADHD, medication, and fNIRS in PsychInfo, Scopus, and PubMed electronic databases.</p><p><strong>Results: </strong>The search yielded 23 published studies meeting inclusion criteria. There was a high degree of heterogeneity in terms of the research methodology and procedures, which is explained in part by the distinct goals and approaches of the studies reviewed. However, there was also relative consistency in outcomes among a select group of studies that demonstrated a similar research focus.</p><p><strong>Conclusion: </strong>Although fNIRS has great potential to further our understanding of the effects of ADHD medications on the neuronal activity of children and adolescents with ADHD, the current research base is still relatively small and there are limitations and methodological inconsistencies that should be addressed in future studies.</p>","PeriodicalId":73094,"journal":{"name":"Frontiers in neuroimaging","volume":"2 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10078617/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9277952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dependence of resting-state-based cerebrovascular reactivity (CVR) mapping on spatial resolution.","authors":"Peiying Liu, Beini Hu, Lincoln Kartchner, Parimal Joshi, Cuimei Xu, Dengrong Jiang","doi":"10.3389/fnimg.2023.1205459","DOIUrl":"https://doi.org/10.3389/fnimg.2023.1205459","url":null,"abstract":"<p><p>Cerebrovascular reactivity (CVR) is typically assessed with a carbon dioxide (CO<sub>2</sub>) stimulus combined with BOLD fMRI. Recently, resting-state (RS) BOLD fMRI has been shown capable of generating CVR maps, providing a potential for broader CVR applications in neuroimaging studies. However, prior RS-CVR studies have primarily been performed at a spatial resolution of 3-4 mm voxel sizes. It remains unknown whether RS-CVR can also be obtained at high-resolution without major degradation in image quality. In this study, we investigated RS-CVR mapping based on resting-state BOLD MRI across a range of spatial resolutions in a group of healthy subjects, in an effort to examine the feasibility of RS-CVR measurement at high resolution. Comparing the results of RS-CVR with the maps obtained by the conventional CO2-inhalation method, our results suggested that good CVR map quality can be obtained at a voxel size as small as 2 mm isotropic. Our results also showed that, RS-CVR maps revealed resolution-dependent sensitivity. However, even at a high resolution of 2 mm isotropic voxel size, the voxel-wise sensitivity is still greater than that of typical task-evoked fMRI. Scan duration affected the sensitivity of RS-CVR mapping, but had no significant effect on its accuracy. These findings suggest that RS-CVR mapping can be applied at a similar resolution as state-of-the-art fMRI studies, which will broaden the use of CVR mapping in basic science and clinical applications including retrospective analysis of previously collected fMRI data.</p>","PeriodicalId":73094,"journal":{"name":"Frontiers in neuroimaging","volume":"2 ","pages":"1205459"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10406303/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9965712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Isaiah Ailes, Mashaal Syed, Caio M Matias, Laura Krisa, Jingya Miao, Anish Sathe, Islam Fayed, Abdulaziz Alhussein, Peter Natale, Feroze B Mohamed, Kiran Talekar, Mahdi Alizadeh
{"title":"Case report: Utilizing diffusion-weighted MRI on a patient with chronic low back pain treated with spinal cord stimulation.","authors":"Isaiah Ailes, Mashaal Syed, Caio M Matias, Laura Krisa, Jingya Miao, Anish Sathe, Islam Fayed, Abdulaziz Alhussein, Peter Natale, Feroze B Mohamed, Kiran Talekar, Mahdi Alizadeh","doi":"10.3389/fnimg.2023.1137848","DOIUrl":"https://doi.org/10.3389/fnimg.2023.1137848","url":null,"abstract":"<p><p>Diffusion-weighted magnetic resonance imaging (dwMRI) has increasingly demonstrated greater utility in analyzing neuronal microstructure. In patients with chronic low back pain (cLBP), using dwMRI to observe neuronal microstructure can lead to non-invasive biomarkers which could provide clinicians with an objective quantitative prognostic tool. In this case report, we investigated dwMRI for the development of non-invasive biomarkers by conducting a region-based analysis of a 55-year-old male patient with failed back surgery syndrome (FBSS) treated with spinal cord stimulation (SCS). We hypothesized that dwMRI could safely generate quantitative data reflecting cerebral microstructural alterations driven by neuromodulation. Neuroimaging was performed at 6- and 12- months post-SCS implantation. The quantitative maps generated included diffusion tensor imaging (DTI) parameters; fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD), and mean diffusivity (MD) computed from whole brain tractography. To examine specific areas of the brain, 44 regions of interest (ROIs), collectively representing the pain NeuroMatrix, were extracted and registered to the patient's diffusion space. Average diffusion indices were calculated from the ROIs at both 6- and 12- months. Regions with >10% relative change in at least 3 of the 4 maps were reported. Using this selection criterion, 8 ROIs demonstrated over 10% relative changes. These ROIs were mainly located in the insular gyri. In addition to the quantitative data, a series of questionnaires were administered during the 6- and 12-month visits to assess pain intensity, functional disability, and quality of life. Overall improvements were observed in these components, with the Pain Catastrophizing Scale (PCS) displaying the greatest change. Lastly, we demonstrated the safety of dwMRI for a patient with SCS. In summary, the results from the case report prompt further investigation in applying dwMRI in a larger cohort to better correlate the influence of SCS with brain microstructural alterations, supporting the utility of dwMRI to generate non-invasive biomarkers for prognostication.</p>","PeriodicalId":73094,"journal":{"name":"Frontiers in neuroimaging","volume":"2 ","pages":"1137848"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10406238/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9956740","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Multiplex core of the human brain using structural, functional and metabolic connectivity derived from hybrid PET-MR imaging.","authors":"Martijn Devrome, Koen Van Laere, Michel Koole","doi":"10.3389/fnimg.2023.1115965","DOIUrl":"https://doi.org/10.3389/fnimg.2023.1115965","url":null,"abstract":"<p><p>With the increasing success of mapping brain networks and availability of multiple MR- and PET-based connectivity measures, the need for novel methodologies to unravel the structure and function of the brain at multiple spatial and temporal scales is emerging. Therefore, in this work, we used hybrid PET-MR data of healthy volunteers (<i>n</i> = 67) to identify multiplex core nodes in the human brain. First, monoplex networks of structural, functional and metabolic connectivity were constructed, and consequently combined into a multiplex SC-FC-MC network by linking the same nodes categorically across layers. Taking into account the multiplex nature using a tensorial approach, we identified a set of core nodes in this multiplex network based on a combination of eigentensor centrality and overlapping degree. We introduced a coreness coefficient, which mitigates the effect of modeling parameters to obtain robust results. The proposed methodology was applied onto young and elderly healthy volunteers, where differences observed in the monoplex networks persisted in the multiplex as well. The multiplex core showed a decreased contribution to the default mode and salience network, while an increased contribution to the dorsal attention and somatosensory network was observed in the elderly population. Moreover, a clear distinction in eigentensor centrality was found between young and elderly healthy volunteers.</p>","PeriodicalId":73094,"journal":{"name":"Frontiers in neuroimaging","volume":"2 ","pages":"1115965"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10461102/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10121083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alexandre Berger, Ekaterina Koshmanova, Elise Beckers, Roya Sharifpour, Ilenia Paparella, Islay Campbell, Nasrin Mortazavi, Fermin Balda, Yeo-Jin Yi, Laurent Lamalle, Laurence Dricot, Christophe Phillips, Heidi I L Jacobs, Puneet Talwar, Riëm El Tahry, Siya Sherif, Gilles Vandewalle
{"title":"Structural and functional characterization of the locus coeruleus in young and late middle-aged individuals.","authors":"Alexandre Berger, Ekaterina Koshmanova, Elise Beckers, Roya Sharifpour, Ilenia Paparella, Islay Campbell, Nasrin Mortazavi, Fermin Balda, Yeo-Jin Yi, Laurent Lamalle, Laurence Dricot, Christophe Phillips, Heidi I L Jacobs, Puneet Talwar, Riëm El Tahry, Siya Sherif, Gilles Vandewalle","doi":"10.3389/fnimg.2023.1207844","DOIUrl":"https://doi.org/10.3389/fnimg.2023.1207844","url":null,"abstract":"<p><strong>Introduction: </strong>The brainstem locus coeruleus (LC) influences a broad range of brain processes, including cognition. The so-called LC contrast is an accepted marker of the integrity of the LC that consists of a local hyperintensity on specific Magnetic Resonance Imaging (MRI) structural images. The small size of the LC has, however, rendered its functional characterization difficult in humans, including in aging. A full characterization of the structural and functional characteristics of the LC in healthy young and late middle-aged individuals is needed to determine the potential roles of the LC in different medical conditions. Here, we wanted to determine whether the activation of the LC in a mismatch negativity task changes in aging and whether the LC functional response was associated to the LC contrast.</p><p><strong>Methods: </strong>We used Ultra-High Field (UHF) 7-Tesla functional MRI (fMRI) to record brain response during an auditory oddball task in 53 healthy volunteers, including 34 younger (age: 22.15y ± 3.27; 29 women) and 19 late middle-aged (age: 61.05y ± 5.3; 14 women) individuals.</p><p><strong>Results: </strong>Whole-brain analyses confirmed brain responses in the typical cortical and subcortical regions previously associated with mismatch negativity. When focusing on the brainstem, we found a significant response in the rostral part of the LC probability mask generated based on individual LC images. Although bilateral, the activation was more extensive in the left LC. Individual LC activity was not significantly different between young and late middle-aged individuals. Importantly, while the LC contrast was higher in older individuals, the functional response of the LC was not significantly associated with its contrast.</p><p><strong>Discussion: </strong>These findings may suggest that the age-related alterations of the LC structural integrity may not be related to changes in its functional response. The results further suggest that LC responses may remain stable in healthy individuals aged 20 to 70.</p>","PeriodicalId":73094,"journal":{"name":"Frontiers in neuroimaging","volume":"2 ","pages":"1207844"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10406214/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9965707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Antoine Spahr, Jennifer Ståhle, Chunliang Wang, Magnus Kaijser
{"title":"Label-efficient deep semantic segmentation of intracranial hemorrhages in CT-scans.","authors":"Antoine Spahr, Jennifer Ståhle, Chunliang Wang, Magnus Kaijser","doi":"10.3389/fnimg.2023.1157565","DOIUrl":"https://doi.org/10.3389/fnimg.2023.1157565","url":null,"abstract":"<p><p>Intracranial hemorrhage (ICH) is a common finding in traumatic brain injury (TBI) and computed tomography (CT) is considered the gold standard for diagnosis. Automated detection of ICH provides clinical value in diagnostics and in the ability to feed robust quantification measures into future prediction models. Several studies have explored ICH detection and segmentation but the research process is somewhat hindered due to a lack of open large and labeled datasets, making validation and comparison almost impossible. The complexity of the task is further challenged by the heterogeneity of ICH patterns, requiring a large number of labeled data to train robust and reliable models. Consequently, due to the labeling cost, there is a need for label-efficient algorithms that can exploit easily available unlabeled or weakly-labeled data. Our aims for this study were to evaluate whether transfer learning can improve ICH segmentation performance and to compare a variety of transfer learning approaches that harness unlabeled and weakly-labeled data. Three self-supervised and three weakly-supervised transfer learning approaches were explored. To be used in our comparisons, we also manually labeled a dataset of 51 CT scans. We demonstrate that transfer learning improves ICH segmentation performance on both datasets. Unlike most studies on ICH segmentation our work relies exclusively on publicly available datasets, allowing for easy comparison of performances in future studies. To further promote comparison between studies, we also present a new public dataset of ICH-labeled CT scans, Seq-CQ500.</p>","PeriodicalId":73094,"journal":{"name":"Frontiers in neuroimaging","volume":"2 ","pages":"1157565"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10406224/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9956739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Soukhin Das, Weigang Yi, Mingzhou Ding, George R Mangun
{"title":"Optimizing cognitive neuroscience experiments for separating event- related fMRI BOLD responses in non-randomized alternating designs.","authors":"Soukhin Das, Weigang Yi, Mingzhou Ding, George R Mangun","doi":"10.3389/fnimg.2023.1068616","DOIUrl":"https://doi.org/10.3389/fnimg.2023.1068616","url":null,"abstract":"<p><p>Functional magnetic resonance imaging (fMRI) has revolutionized human brain research. But there exists a fundamental mismatch between the rapid time course of neural events and the sluggish nature of the fMRI blood oxygen level-dependent (BOLD) signal, which presents special challenges for cognitive neuroscience research. This limitation in the temporal resolution of fMRI puts constraints on the information about brain function that can be obtained with fMRI and also presents methodological challenges. Most notably, when using fMRI to measure neural events occurring closely in time, the BOLD signals may temporally overlap one another. This overlap problem may be exacerbated in complex experimental paradigms (stimuli and tasks) that are designed to manipulate and isolate specific cognitive-neural processes involved in perception, cognition, and action. Optimization strategies to deconvolve overlapping BOLD signals have proven effective in providing separate estimates of BOLD signals from temporally overlapping brain activity, but there remains reduced efficacy of such approaches in many cases. For example, when stimulus events necessarily follow a non-random order, like in trial-by-trial cued attention or working memory paradigms. Our goal is to provide guidance to improve the efficiency with which the underlying responses evoked by one event type can be detected, estimated, and distinguished from other events in designs common in cognitive neuroscience research. We pursue this goal using simulations that model the nonlinear and transient properties of fMRI signals, and which use more realistic models of noise. Our simulations manipulated: (i) Inter-Stimulus-Interval (ISI), (ii) proportion of so-called null events, and (iii) nonlinearities in the BOLD signal due to both cognitive and design parameters. We offer a theoretical framework along with a python toolbox called deconvolve to provide guidance on the optimal design parameters that will be of particular utility when using non-random, alternating event sequences in experimental designs. In addition, though, we also highlight the challenges and limitations in simultaneously optimizing both detection and estimation efficiency of BOLD signals in these common, but complex, cognitive neuroscience designs.</p>","PeriodicalId":73094,"journal":{"name":"Frontiers in neuroimaging","volume":"2 ","pages":"1068616"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10406298/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10337580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Elwira Szychot, Dolin Bhagawati, Magdalena Joanna Sokolska, David Walker, Steven Gill, Harpreet Hyare
{"title":"Evaluating drug distribution in children and young adults with diffuse midline glioma of the pons (DIPG) treated with convection-enhanced drug delivery.","authors":"Elwira Szychot, Dolin Bhagawati, Magdalena Joanna Sokolska, David Walker, Steven Gill, Harpreet Hyare","doi":"10.3389/fnimg.2023.1062493","DOIUrl":"https://doi.org/10.3389/fnimg.2023.1062493","url":null,"abstract":"<p><strong>Aims: </strong>To determine an imaging protocol that can be used to assess the distribution of infusate in children with DIPG treated with CED.</p><p><strong>Methods: </strong>13 children diagnosed with DIPG received between 3.8 and 5.7 ml of infusate, through two pairs of catheters to encompass tumor volume on day 1 of cycle one of treatment. Volumetric T2-weighted (T2W) and diffusion-weighted MRI imaging (DWI) were performed before and after day 1 of CED. Apparent diffusion coefficient (ADC) maps were calculated. The tumor volume pre and post CED was automatically segmented on T2W and ADC on the basis of signal intensity. The ADC maps pre and post infusion were aligned and subtracted to visualize the infusate distribution.</p><p><strong>Results: </strong>There was a significant increase (<i>p</i> < 0.001) in mean ADC and T2W signal intensity (SI) ratio and a significant (<i>p</i> < 0.001) increase in mean tumor volume defined by ADC and T2W SI post infusion (mean ADC volume pre: 19.8 ml, post: 24.4 ml; mean T2W volume pre: 19.4 ml, post: 23.4 ml). A significant correlation (<i>p</i> < 0.001) between infusate volume and difference in ADC/T2W SI defined tumor volume was observed (ADC, r = 0.76; T2W, r = 0.70). Finally, pixel-by-pixel subtraction of the ADC maps pre and post infusion demonstrated a volume of high signal intensity, presumed infusate distribution.</p><p><strong>Conclusions: </strong>ADC and T2W MRI are proposed as a combined parameter method for evaluation of CED infusate distribution in brainstem tumors in future clinical trials.</p>","PeriodicalId":73094,"journal":{"name":"Frontiers in neuroimaging","volume":"2 ","pages":"1062493"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10406269/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9956734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Efficient evaluation of the Open QC task fMRI dataset.","authors":"Joset A Etzel","doi":"10.3389/fnimg.2023.1070274","DOIUrl":"https://doi.org/10.3389/fnimg.2023.1070274","url":null,"abstract":"<p><p>This article is an evaluation of the task dataset as part of the Demonstrating Quality Control (QC) Procedures in fMRI (FMRI Open QC Project) methodological research topic. The quality of both the task and fMRI aspects of the dataset are summarized in concise reports created with R, AFNI, and knitr. The reports and underlying tests are designed to highlight potential issues, are pdf files for easy archiving, and require relatively little experience to use and adapt. This article is accompanied by both the compiled reports and the source code and explanation necessary to use them.</p>","PeriodicalId":73094,"journal":{"name":"Frontiers in neuroimaging","volume":"2 ","pages":"1070274"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10406291/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9956736","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}