{"title":"Volitional inhibition and brain-machine interfaces: a mandatory wedding.","authors":"Giovanni Mirabella","doi":"10.3389/fneng.2012.00020","DOIUrl":"https://doi.org/10.3389/fneng.2012.00020","url":null,"abstract":"A key feature of voluntary behavior is its flexibility which, in a sense, represents the other side of self-control. We need to select and perform actions whenever they are more opportune, i.e., whenever the costs intrinsically associated with them are lower than their benefits. Given that we cannot predict with certainty the occurrence of an event and the time lag elapsing between the decision to move and the physical execution of a movement, we have developed the ability to cancel pending actions. Suppressing ongoing acts is fundamental when sudden changes in the surrounding environment take place. For instance, the sudden arrival of a car in the road we were about to cross requires us to stop our step to avoid being hit. The great importance of this executive function, named “volitional” inhibition, is witnessed by the great number of brain regions implicated in its elaboration. Here, the term volitional does not imply a conscious participation. In humans the emergence of awareness coupled with the vetoing ability gave rise to what Libet (1985) called “free would not,” that is, our capacity to freely cancel those actions we do not wish to perform. However, we do not exert our free will on every choice we have to make, but just on those more controversial or salient (e.g., how to respond to the request of working over the week-end). Most of the time the fate of actions is decided by automatic processes, otherwise we could not have sufficient free capacity for other computations. \u0000 \u0000Overall volitional inhibition represents a cornerstone of voluntary behavior but, despite an incredible amount of work, both the localizations of its neural substrates and their specific contributions are still controversial. For instance, it has been suggested that inhibitory commands are generated in a right-lateralized frontal–basal ganglia–thalamic network (Aron et al., 2007), but there is scant knowledge about where they act. One paper in this Research Topic (Mattia et al., 2012) indicates that the motor cortices (both the primary motor cortex and the premotor cortex) are the targets of cancelation commands (see also Mirabella et al., 2011). In other words, it suggests that the same neural substrates involved in planning and executing an act (see also Busan et al., 2012) are also involved in its suppression. Along the same lines, Pastor-Bernier et al. (2012) show that neurons of the premotor cortex continuously update their activities during movement planning, so that their discharge reflects switches between alternative plans when a selected movement option suddenly turns out to be inappropriate. \u0000 \u0000Importantly, as described in the review by Stuphorn and Emeric (2012), the inhibitory network not only provides signals indicating the withholding of actions whenever a stop signal is presented (reactive control), but also provides signals enabling the subject to adopt a response strategy which takes into account the context in which he or she operates. This form of","PeriodicalId":73093,"journal":{"name":"Frontiers in neuroengineering","volume":"5 ","pages":"20"},"PeriodicalIF":0.0,"publicationDate":"2012-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3389/fneng.2012.00020","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30901676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Toward on-chip, in-cell recordings from cultured cardiomyocytes by arrays of gold mushroom-shaped microelectrodes.","authors":"Anna Fendyur, Micha E Spira","doi":"10.3389/fneng.2012.00021","DOIUrl":"https://doi.org/10.3389/fneng.2012.00021","url":null,"abstract":"<p><p>Cardiological research greatly rely on the use of cultured primary cardiomyocytes (CMs). The prime methodology to assess CM network electrophysiology is based on the use of extracellular recordings by substrate-integrated planar Micro-Electrode Arrays (MEAs). Whereas this methodology permits simultaneous, long-term monitoring of the CM electrical activity, it limits the information to extracellular field potentials (FPs). The alternative method of intracellular action potentials (APs) recordings by sharp- or patch-microelectrodes is limited to a single cell at a time. Here, we began to merge the advantages of planar MEA and intracellular microelectrodes. To that end we cultured rat CM on micrometer size protruding gold mushroom-shaped microelectrode (gMμEs) arrays. Cultured CMs engulf the gMμE permitting FPs recordings from individual cells. Local electroporation of a CM converts the extracellular recording configuration to attenuated intracellular APs with shape and duration similar to those recorded intracellularly. The procedure enables to simultaneously record APs from an unlimited number of CMs. The electroporated membrane spontaneously recovers. This allows for repeated recordings from the same CM a number of times (>8) for over 10 days. The further development of CM-gMμE configuration opens up new venues for basic and applied biomedical research.</p>","PeriodicalId":73093,"journal":{"name":"Frontiers in neuroengineering","volume":"5 ","pages":"21"},"PeriodicalIF":0.0,"publicationDate":"2012-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3389/fneng.2012.00021","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30872206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zuoguan Wang, Aysegul Gunduz, Peter Brunner, Anthony L Ritaccio, Qiang Ji, Gerwin Schalk
{"title":"Decoding onset and direction of movements using Electrocorticographic (ECoG) signals in humans.","authors":"Zuoguan Wang, Aysegul Gunduz, Peter Brunner, Anthony L Ritaccio, Qiang Ji, Gerwin Schalk","doi":"10.3389/fneng.2012.00015","DOIUrl":"https://doi.org/10.3389/fneng.2012.00015","url":null,"abstract":"<p><p>Communication of intent usually requires motor function. This requirement can be limiting when a person is engaged in a task, or prohibitive for some people suffering from neuromuscular disorders. Determining a person's intent, e.g., where and when to move, from brain signals rather than from muscles would have important applications in clinical or other domains. For example, detection of the onset and direction of intended movements may provide the basis for restoration of simple grasping function in people with chronic stroke, or could be used to optimize a user's interaction with the surrounding environment. Detecting the onset and direction of actual movements are a first step in this direction. In this study, we demonstrate that we can detect the onset of intended movements and their direction using electrocorticographic (ECoG) signals recorded from the surface of the cortex in humans. We also demonstrate in a simulation that the information encoded in ECoG about these movements may improve performance in a targeting task. In summary, the results in this paper suggest that detection of intended movement is possible, and may serve useful functions.</p>","PeriodicalId":73093,"journal":{"name":"Frontiers in neuroengineering","volume":"5 ","pages":"15"},"PeriodicalIF":0.0,"publicationDate":"2012-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3389/fneng.2012.00015","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30832248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pierpaolo Busan, Marco Zanon, Federica Vinciati, Fabrizio Monti, Gilberto Pizzolato, Piero P Battaglini
{"title":"Transcranial magnetic stimulation and preparation of visually-guided reaching movements.","authors":"Pierpaolo Busan, Marco Zanon, Federica Vinciati, Fabrizio Monti, Gilberto Pizzolato, Piero P Battaglini","doi":"10.3389/fneng.2012.00018","DOIUrl":"10.3389/fneng.2012.00018","url":null,"abstract":"<p><p>To better define the neural networks related to preparation of reaching, we applied transcranial magnetic stimulation (TMS) to the lateral parietal and frontal cortex. TMS did not evoke effects closely related to preparation of reaching, suggesting that neural networks already identified by our group are not larger than previously thought. We also replicated previous TMS/EEG data by applying TMS to the parietal cortex: new analyses were performed to better support reliability of already reported findings (Zanon et al., 2010; Brain Topography 22, 307-317). We showed the existence of neural circuits ranging from posterior to frontal regions of the brain after the stimulation of parietal cortex, supporting the idea of strong connections among these areas and suggesting their possible temporal dynamic. Connection with ventral stream was confirmed. The present work helps to define those areas which are involved in preparation of natural reaching in humans. They correspond to parieto-occipital, parietal and premotor medial regions of the left hemisphere, i.e., the contralateral one with respect to the moving hand, as suggested by previous studies. Behavioral data support the existence of a discrete stream involved in reaching. Besides the serial flow of activation from posterior to anterior direction, a parallel elaboration of information among parietal and premotor areas seems also to exist. Present cortico-cortical interactions (TMS/EEG experiment) show propagation of activity to frontal, temporal, parietal and more posterior regions, exhibiting distributed communication among various areas in the brain. The neural system highlighted by TMS/EEG experiments is wider with respect to the one disclosed by the TMS behavioral approach. Further studies are needed to unravel this paucity of overlap. Moreover, the understanding of these mechanisms is crucial for the comprehension of response inhibition and changes in prepared actions, which are common behaviors in everyday life.</p>","PeriodicalId":73093,"journal":{"name":"Frontiers in neuroengineering","volume":"5 ","pages":"18"},"PeriodicalIF":0.0,"publicationDate":"2012-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3413947/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30832249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Selina C Wriessnegger, Günther Bauernfeind, Kerstin Schweitzer, Silvia Kober, Christa Neuper, Gernot R Müller-Putz
{"title":"The interplay of prefrontal and sensorimotor cortices during inhibitory control of learned motor behavior.","authors":"Selina C Wriessnegger, Günther Bauernfeind, Kerstin Schweitzer, Silvia Kober, Christa Neuper, Gernot R Müller-Putz","doi":"10.3389/fneng.2012.00017","DOIUrl":"https://doi.org/10.3389/fneng.2012.00017","url":null,"abstract":"<p><p>In the present study inhibitory cortical mechanisms have been investigated during execution and inhibition of learned motor programs by means of multi-channel functional near infrared spectroscopy (fNIRS). fNIRS is an emerging non-invasive optical technique for the in vivo assessment of cerebral oxygenation, concretely changes of oxygenated [oxy-Hb], and deoxygenated [deoxy-Hb] hemoglobin. Eleven healthy subjects executed or inhibited previous learned finger and foot movements indicated by a visual cue. The execution of finger/foot movements caused a typical activation pattern namely an increase of [oxy-Hb] and a decrease of [deoxy-Hb] whereas the inhibition of finger/foot movements caused a decrease of [oxy-Hb] and an increase of [deoxy-Hb] in the hand or foot representation area (left or medial somatosensory and primary motor cortex). Additionally an increase of [oxy-Hb] and a decrease of [deoxy-Hb] in the medial area of the anterior prefrontal cortex (APFC) during the inhibition of finger/foot movements were found. The results showed, that inhibition/execution of learned motor programs depends on an interplay of focal increases and decreases of neural activity in prefrontal and sensorimotor areas regardless of the effector. As far as we know, this is the first study investigating inhibitory processes of finger/foot movements by means of multi-channel fNIRS.</p>","PeriodicalId":73093,"journal":{"name":"Frontiers in neuroengineering","volume":"5 ","pages":"17"},"PeriodicalIF":0.0,"publicationDate":"2012-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3389/fneng.2012.00017","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30800773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Peter J Ifft, Mikhail A Lebedev, Miguel A L Nicolelis
{"title":"Reprogramming movements: extraction of motor intentions from cortical ensemble activity when movement goals change.","authors":"Peter J Ifft, Mikhail A Lebedev, Miguel A L Nicolelis","doi":"10.3389/fneng.2012.00016","DOIUrl":"https://doi.org/10.3389/fneng.2012.00016","url":null,"abstract":"<p><p>The ability to inhibit unwanted movements and change motor plans is essential for behaviors of advanced organisms. The neural mechanisms by which the primate motor system rejects undesired actions have received much attention during the last decade, but it is not well understood how this neural function could be utilized to improve the efficiency of brain-machine interfaces (BMIs). Here we employed linear discriminant analysis (LDA) and a Wiener filter to extract motor plan transitions from the activity of ensembles of sensorimotor cortex neurons. Two rhesus monkeys, chronically implanted with multielectrode arrays in primary motor (M1) and primary sensory (S1) cortices, were overtrained to produce reaching movements with a joystick toward visual targets upon their presentation. Then, the behavioral task was modified to include a distracting target that flashed for 50, 150, or 250 ms (25% of trials each) followed by the true target that appeared at a different screen location. In the remaining 25% of trials, the initial target stayed on the screen and was the target to be approached. M1 and S1 neuronal activity represented both the true and distracting targets, even for the shortest duration of the distracting event. This dual representation persisted both when the monkey initiated movements toward the distracting target and then made corrections and when they moved directly toward the second, true target. The Wiener filter effectively decoded the location of the true target, whereas the LDA classifier extracted the location of both targets from ensembles of 50-250 neurons. Based on these results, we suggest developing real-time BMIs that inhibit unwanted movements represented by brain activity while enacting the desired motor outcome concomitantly.</p>","PeriodicalId":73093,"journal":{"name":"Frontiers in neuroengineering","volume":"5 ","pages":"16"},"PeriodicalIF":0.0,"publicationDate":"2012-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3389/fneng.2012.00016","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30785410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Reza Fazel-Rezai, Brendan Z Allison, Christoph Guger, Eric W Sellers, Sonja C Kleih, Andrea Kübler
{"title":"P300 brain computer interface: current challenges and emerging trends.","authors":"Reza Fazel-Rezai, Brendan Z Allison, Christoph Guger, Eric W Sellers, Sonja C Kleih, Andrea Kübler","doi":"10.3389/fneng.2012.00014","DOIUrl":"10.3389/fneng.2012.00014","url":null,"abstract":"<p><p>A brain-computer interface (BCI) enables communication without movement based on brain signals measured with electroencephalography (EEG). BCIs usually rely on one of three types of signals: the P300 and other components of the event-related potential (ERP), steady state visual evoked potential (SSVEP), or event related desynchronization (ERD). Although P300 BCIs were introduced over twenty years ago, the past few years have seen a strong increase in P300 BCI research. This closed-loop BCI approach relies on the P300 and other components of the ERP, based on an oddball paradigm presented to the subject. In this paper, we overview the current status of P300 BCI technology, and then discuss new directions: paradigms for eliciting P300s; signal processing methods; applications; and hybrid BCIs. We conclude that P300 BCIs are quite promising, as several emerging directions have not yet been fully explored and could lead to improvements in bit rate, reliability, usability, and flexibility.</p>","PeriodicalId":73093,"journal":{"name":"Frontiers in neuroengineering","volume":"5 ","pages":"14"},"PeriodicalIF":0.0,"publicationDate":"2012-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3389/fneng.2012.00014","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30781931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Eileen Lew, Ricardo Chavarriaga, Stefano Silvoni, José Del R Millán
{"title":"Detection of self-paced reaching movement intention from EEG signals.","authors":"Eileen Lew, Ricardo Chavarriaga, Stefano Silvoni, José Del R Millán","doi":"10.3389/fneng.2012.00013","DOIUrl":"https://doi.org/10.3389/fneng.2012.00013","url":null,"abstract":"<p><p>Future neuroprosthetic devices, in particular upper limb, will require decoding and executing not only the user's intended movement type, but also when the user intends to execute the movement. This work investigates the potential use of brain signals recorded non-invasively for detecting the time before a self-paced reaching movement is initiated which could contribute to the design of practical upper limb neuroprosthetics. In particular, we show the detection of self-paced reaching movement intention in single trials using the readiness potential, an electroencephalography (EEG) slow cortical potential (SCP) computed in a narrow frequency range (0.1-1 Hz). Our experiments with 12 human volunteers, two of them stroke subjects, yield high detection rates prior to the movement onset and low detection rates during the non-movement intention period. With the proposed approach, movement intention was detected around 500 ms before actual onset, which clearly matches previous literature on readiness potentials. Interestingly, the result obtained with one of the stroke subjects is coherent with those achieved in healthy subjects, with single-trial performance of up to 92% for the paretic arm. These results suggest that, apart from contributing to our understanding of voluntary motor control for designing more advanced neuroprostheses, our work could also have a direct impact on advancing robot-assisted neurorehabilitation.</p>","PeriodicalId":73093,"journal":{"name":"Frontiers in neuroengineering","volume":"5 ","pages":"13"},"PeriodicalIF":0.0,"publicationDate":"2012-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3389/fneng.2012.00013","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30969102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M Mattia, S Spadacenta, L Pavone, P Quarato, V Esposito, A Sparano, F Sebastiano, G Di Gennaro, R Morace, G Cantore, G Mirabella
{"title":"Stop-event-related potentials from intracranial electrodes reveal a key role of premotor and motor cortices in stopping ongoing movements.","authors":"M Mattia, S Spadacenta, L Pavone, P Quarato, V Esposito, A Sparano, F Sebastiano, G Di Gennaro, R Morace, G Cantore, G Mirabella","doi":"10.3389/fneng.2012.00012","DOIUrl":"https://doi.org/10.3389/fneng.2012.00012","url":null,"abstract":"<p><p>In humans, the ability to withhold manual motor responses seems to rely on a right-lateralized frontal-basal ganglia-thalamic network, including the pre-supplementary motor area and the inferior frontal gyrus (IFG). These areas should drive subthalamic nuclei to implement movement inhibition via the hyperdirect pathway. The output of this network is expected to influence those cortical areas underlying limb movement preparation and initiation, i.e., premotor (PMA) and primary motor (M1) cortices. Electroencephalographic (EEG) studies have shown an enhancement of the N200/P300 complex in the event-related potentials (ERPs) when a planned reaching movement is successfully stopped after the presentation of an infrequent stop-signal. PMA and M1 have been suggested as possible neural sources of this ERP complex but, due to the limited spatial resolution of scalp EEG, it is not yet clear which cortical areas contribute to its generation. To elucidate the role of motor cortices, we recorded epicortical ERPs from the lateral surface of the fronto-temporal lobes of five pharmacoresistant epileptic patients performing a reaching version of the countermanding task while undergoing presurgical monitoring. We consistently found a stereotyped ERP complex on a single-trial level when a movement was successfully cancelled. These ERPs were selectively expressed in M1, PMA, and Brodmann's area (BA) 9 and their onsets preceded the end of the stop process, suggesting a causal involvement in this executive function. Such ERPs also occurred in unsuccessful-stop (US) trials, that is, when subjects moved despite the occurrence of a stop-signal, mostly when they had long reaction times (RTs). These findings support the hypothesis that motor cortices are the final target of the inhibitory command elaborated by the frontal-basal ganglia-thalamic network.</p>","PeriodicalId":73093,"journal":{"name":"Frontiers in neuroengineering","volume":"5 ","pages":"12"},"PeriodicalIF":0.0,"publicationDate":"2012-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3389/fneng.2012.00012","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30733649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Proactive and reactive control by the medial frontal cortex.","authors":"Veit Stuphorn, Erik E Emeric","doi":"10.3389/fneng.2012.00009","DOIUrl":"https://doi.org/10.3389/fneng.2012.00009","url":null,"abstract":"<p><p>Adaptive behavior requires the ability to flexibly control actions. This can occur either proactively to anticipate task requirements, or reactively in response to sudden changes. Recent work in humans has identified a network of cortical and subcortical brain region that might have an important role in proactive and reactive control. However, due to technical limitations, such as the spatial and temporal resolution of the BOLD signal, human imaging experiments are not able to disambiguate the specific function(s) of these brain regions. These limitations can be overcome through single-unit recordings in non-human primates. In this article, we describe the behavioral and physiological evidence for dual mechanisms of control in response inhibition in the medial frontal cortex of monkeys performing the stop signal or countermanding task.</p>","PeriodicalId":73093,"journal":{"name":"Frontiers in neuroengineering","volume":"5 ","pages":"9"},"PeriodicalIF":0.0,"publicationDate":"2012-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3389/fneng.2012.00009","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30709716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}