Zheng Zhao, Harshani Wijerathne, Andrew K Godwin, Steven A Soper
{"title":"Isolation and analysis methods of extracellular vesicles (EVs).","authors":"Zheng Zhao, Harshani Wijerathne, Andrew K Godwin, Steven A Soper","doi":"10.20517/evcna.2021.07","DOIUrl":"10.20517/evcna.2021.07","url":null,"abstract":"<p><p>Extracellular vesicles (EVs) have been recognized as an evolving biomarker within the liquid biopsy family. While carrying both host cell proteins and different types of RNAs, EVs are also present in sufficient quantities in biological samples to be tested using many molecular analysis platforms to interrogate their content. However, because EVs in biological samples are comprised of both disease and non-disease related EVs, enrichment is often required to remove potential interferences from the downstream molecular assay. Most benchtop isolation/enrichment methods require > milliliter levels of sample and can cause varying degrees of damage to the EVs. In addition, some of the common EV benchtop isolation methods do not sort the diseased from the non-diseased related EVs. Simultaneously, the detection of the overall concentration and size distribution of the EVs is highly dependent on techniques such as electron microscopy and Nanoparticle Tracking Analysis, which can include unexpected variations and biases as well as complexity in the analysis. This review discusses the importance of EVs as a biomarker secured from a liquid biopsy and covers some of the traditional and non-traditional, including microfluidics and resistive pulse sensing, technologies for EV isolation and detection, respectively.</p>","PeriodicalId":73008,"journal":{"name":"Extracellular vesicles and circulating nucleic acids","volume":"2 ","pages":"80-103"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8372011/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39328416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Recent updates on the role of extracellular vesicles in the pathogenesis of allergic asthma.","authors":"Ashokkumar Srinivasan, Isaac Kirubakaran Sundar","doi":"10.20517/evcna.2021.03","DOIUrl":"10.20517/evcna.2021.03","url":null,"abstract":"<p><p>Asthma is a chronic inflammatory disease of the airway diagnosed with different endotypes and phenotypes, characterized by airway obstruction in response to allergens, bacterial/viral infections, or pollutants. Several cell types such as the airway epithelial cells, mesenchymal stem cells and different immune cells including dendritic cells (DCs), T and B cells and mast cells play an essential role during the pathobiology of asthma. Extracellular vesicles (EVs) are membranous nanovesicles produced by every cell type that facilitates intercellular communications. EVs contain heterogeneous cargos that primarily depend on the composition or cell type of origin and they can alter the physiological state of the target cells. EVs encompass a wide variety of proteins including Tetraspanins, MHC classes I and II, co-stimulatory molecules, nucleic acids such as RNA, miRNA, piRNA, circRNA, and lipids like ceramides and sphingolipids. Recent literature indicates that EVs play a pivotal role in the pathophysiology of allergic asthma and may potentially be used as a novel biomarker to determine endotypes and phenotypes in severe asthmatics. Based on the prior reports, we speculate that regulation of EVs biogenesis and release might be under the control of circadian rhythms. Thus, circadian rhythms may influence the composition of the EVs, which alter the microenvironment that results in the induction of an immune-inflammatory response to various environmental insults or allergens such as air pollutants, ozone, diesel exhaust particles, pollens, outdoor molds, environmental tobacco smoke, etc. In this mini-review, we summarize the recent updates on the novel role of EVs in the pathogenesis of asthma, and highlight the link between circadian rhythms and EVs that may be important to identify molecular mechanisms to target during the pathogenesis of chronic inflammatory lung disease such as asthma.</p>","PeriodicalId":73008,"journal":{"name":"Extracellular vesicles and circulating nucleic acids","volume":"2 ","pages":"127-147"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8372030/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39328418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Head and neck cancer exosomes drive microRNA-mediated reprogramming of local neurons.","authors":"Patrick J Hunt, Moran Amit","doi":"10.20517/evcna.2020.04","DOIUrl":"10.20517/evcna.2020.04","url":null,"abstract":"<p><p>Solid tumors are complex collections of cells surrounded by benign tissues that influence and are influenced by the tumor. These surrounding cells include vasculature, immune cells, neurons, and other cell types, and are collectively known as the tumor microenvironment. Tumors manipulate their microenvironment for the benefit of the tumor. Autonomic neurons innervate and drive malignant growth in a variety of solid tumors. However, the mechanisms underlying neuron-tumor relationships are not well understood. Recently, Amit <i>et al.</i> described that trophic relationships between oral cavity squamous cell carcinomas (OCSCCs) and nearby autonomic neurons arise through direct signaling between tumors and local neurons. An inducible tumor model in which 4NQO was introduced into the drinking water of <i>Trp53</i> knockout mice was used to model OCSCC-microenvironment interactions. Using this model, this group discovered that loss of p53 expression in OCSCC tumors resulted in increased nerve density within these tumors. This neuritogenesis was controlled by tumor-derived microRNA-laden extracellular vesicles (EVs). Specifically, EV-delivered miR-34a inhibited neuritogenesis, whereas EV-delivered miR-21 and miR-324 increased neuritogenesis. The neurons innervating p53-deficient OCSCC tumors were predominantly adrenergic and arose through the transdifferentiation of trigeminal sensory nerve fibers to adrenergic nerve fibers. This transdifferentiation corresponded with increased expression of neuron-reprogramming transcription factors, including POU5F1, KLF4, and ASCL1, which were overexpressed in the p53-deficient samples, and are proposed targets of miR-34a-mediated regulation. Human OCSCC samples enriched in adrenergic neuron markers are associated strongly with poor outcomes, thus demonstrating the relevance of these findings to cancer patients.</p>","PeriodicalId":73008,"journal":{"name":"Extracellular vesicles and circulating nucleic acids","volume":"1 ","pages":"57-62"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7861575/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25343304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}