Discovery immunology最新文献

筛选
英文 中文
Metabolic regulation of γδ intraepithelial lymphocytes. γδ上皮内淋巴细胞的代谢调节
Discovery immunology Pub Date : 2023-01-01 Epub Date: 2023-08-10 DOI: 10.1093/discim/kyad011
Sara Alonso, Karen Edelblum
{"title":"Metabolic regulation of γδ intraepithelial lymphocytes.","authors":"Sara Alonso, Karen Edelblum","doi":"10.1093/discim/kyad011","DOIUrl":"10.1093/discim/kyad011","url":null,"abstract":"<p><p>Elucidating the relationship between cellular metabolism and T cell function has substantially advanced our understanding of how T cells are regulated in response to activation. The metabolic profiles of circulating or peripheral T cells have been well-described, yet less is known regarding how complex local microenvironments shape or modulate the bioenergetic profile of tissue-resident T lymphocytes. Intraepithelial lymphocytes expressing the γδ T cell receptor (γδ IEL) provide immunosurveillance of the intestinal epithelium to limit tissue injury and microbial invasion; however, their activation and effector responses occur independently of antigen recognition. In this review, we will summarize the current knowledge regarding γδ T cell and IEL metabolic profiles and how this informs our understanding of γδ IEL metabolism. We will also discuss the role of the gut microbiota in shaping the metabolic profile of these sentinel lymphocytes, and in turn, how these bioenergetics contribute to regulation of γδ IEL surveillance behavior and effector function. Improved understanding of the metabolic processes involved in γδ IEL homeostasis and function may yield novel strategies to amplify the protective functions of these cells in the context of intestinal health and disease.</p>","PeriodicalId":72830,"journal":{"name":"Discovery immunology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10766425/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44885219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Discovery Immunology 2023. Highlights from our first full year Discovery Immunology 2023。我们第一年的亮点
Discovery immunology Pub Date : 2023-01-01 DOI: 10.1093/discim/kyad019
Simon Milling
{"title":"Discovery Immunology 2023. Highlights from our first full year","authors":"Simon Milling","doi":"10.1093/discim/kyad019","DOIUrl":"https://doi.org/10.1093/discim/kyad019","url":null,"abstract":"","PeriodicalId":72830,"journal":{"name":"Discovery immunology","volume":"20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135152804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Review: Unravelling the Role of DNA Sensing in Alum Adjuvant Activity. 综述:揭示DNA传感在明矾佐剂活性中的作用
Discovery immunology Pub Date : 2022-12-29 eCollection Date: 2023-01-01 DOI: 10.1093/discim/kyac012
Zara Gatt, Utku Gunes, Arianna Raponi, Larissa Camargo da Rosa, James M Brewer
{"title":"Review: Unravelling the Role of DNA Sensing in Alum Adjuvant Activity.","authors":"Zara Gatt, Utku Gunes, Arianna Raponi, Larissa Camargo da Rosa, James M Brewer","doi":"10.1093/discim/kyac012","DOIUrl":"10.1093/discim/kyac012","url":null,"abstract":"<p><p>Public interest in vaccines is at an all-time high following the SARS-CoV-2 global pandemic. Currently, over 6 billion doses of various vaccines are administered globally each year. Most of these vaccines contain Aluminium-based adjuvants (alum), which have been known and used for almost 100 years to enhance vaccine immunogenicity. However, despite the historical use and importance of alum, we still do not have a complete understanding of how alum works to drive vaccine immunogenicity. In this article, we critically review studies investigating the mechanisms of action of alum adjuvants, highlighting some of the misconceptions and controversies within the area. Although we have emerged with a clearer understanding of how this ubiquitous adjuvant works, we have also highlighted some of the outstanding questions in the field. While these may seem mainly of academic interest, developing a more complete understanding of these mechanisms has the potential to rationally modify and improve the immune response generated by alum-adjuvanted vaccines.</p>","PeriodicalId":72830,"journal":{"name":"Discovery immunology","volume":" ","pages":"kyac012"},"PeriodicalIF":0.0,"publicationDate":"2022-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10917177/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47196393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nur77-Tempo mice reveal T cell steady state antigen recognition. Nur77-Tempo小鼠显示了T细胞稳态抗原识别能力。
Discovery immunology Pub Date : 2022-12-22 DOI: 10.1093/discim/kyac009
Thomas A E Elliot, Emma K Jennings, David A J Lecky, Sophie Rouvray, Gillian M Mackie, Lisa Scarfe, Lozan Sheriff, Masahiro Ono, Kendle M Maslowski, David Bending
{"title":"Nur77-Tempo mice reveal T cell steady state antigen recognition.","authors":"Thomas A E Elliot, Emma K Jennings, David A J Lecky, Sophie Rouvray, Gillian M Mackie, Lisa Scarfe, Lozan Sheriff, Masahiro Ono, Kendle M Maslowski, David Bending","doi":"10.1093/discim/kyac009","DOIUrl":"10.1093/discim/kyac009","url":null,"abstract":"<p><p>In lymphocytes, <i>Nr4a</i> gene expression is specifically regulated by antigen receptor signalling, making them ideal targets for use as distal T cell receptor (TCR) reporters. <i>Nr4a3</i>-Timer of cell kinetics and activity (Tocky) mice are a ground-breaking tool to report TCR-driven <i>Nr4a3</i> expression using Fluorescent Timer protein (FT). FT undergoes a time-dependent shift in its emission spectrum following translation, allowing for the temporal reporting of transcriptional events. Our recent work suggested that <i>Nr4a1</i>/Nur77 may be a more sensitive gene to distal TCR signals compared to <i>Nr4a3</i>, so we, therefore, generated Nur77-Timer-rapidly-expressed-in-lymphocytes (Tempo) mice that express FT under the regulation of Nur77. We validated the ability of Nur77-Tempo mice to report TCR and B cell receptor signals and investigated the signals regulating Nur77-FT expression. We found that Nur77-FT was sensitive to low-strength TCR signals, and its brightness was graded in response to TCR signal strength. Nur77-FT detected positive selection signals in the thymus, and analysis of FT expression revealed that positive selection signals are often persistent in nature, with most thymic Treg expressing FT Blue. We found that active TCR signals in the spleen are low frequency, but CD69<sup>+</sup> lymphoid T cells are enriched for FT Blue<sup>+</sup> Red<sup>+</sup> T cells, suggesting frequent TCR signalling. In non-lymphoid tissue, we saw a dissociation of FT protein from CD69 expression, indicating that tissue residency is not associated with tonic TCR signals. Nur77-Tempo mice, therefore, combine the temporal dynamics from the Tocky innovation with increased sensitivity of <i>Nr4a1</i> to lower TCR signal strengths.</p>","PeriodicalId":72830,"journal":{"name":"Discovery immunology","volume":"1 1","pages":"kyac009"},"PeriodicalIF":0.0,"publicationDate":"2022-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7614040/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10630120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
What do cancer-specific T cells 'see'? 癌症特异性T细胞“看到”了什么?
Discovery immunology Pub Date : 2022-12-06 eCollection Date: 2023-01-01 DOI: 10.1093/discim/kyac011
Sabaria Shah, Abdullah Al-Omari, Katherine W Cook, Samantha J Paston, Lindy G Durrant, Victoria A Brentville
{"title":"What do cancer-specific T cells 'see'?","authors":"Sabaria Shah, Abdullah Al-Omari, Katherine W Cook, Samantha J Paston, Lindy G Durrant, Victoria A Brentville","doi":"10.1093/discim/kyac011","DOIUrl":"10.1093/discim/kyac011","url":null,"abstract":"<p><p>Complex cellular interactions between the immune system and cancer can impact tumour development, growth, and progression. T cells play a key role in these interactions; however, the challenge for T cells is to recognize tumour antigens whilst minimizing cross-reactivity with antigens associated with healthy tissue. Some tumour cells, including those associated with viral infections, have clear, tumour-specific antigens that can be targeted by T cells. A high mutational burden can lead to increased numbers of mutational neoantigens that allow very specific immune responses to be generated but also allow escape variants to develop. Other cancer indications and those with low mutational burden are less easily distinguished from normal tissue. Recent studies have suggested that cancer-associated alterations in tumour cell biology including changes in post-translational modification (PTM) patterns may also lead to novel antigens that can be directly recognized by T cells. The PTM-derived antigens provide tumour-specific T-cell responses that both escape central tolerance and avoid the necessity for individualized therapies. PTM-specific CD4 T-cell responses have shown tumour therapy in murine models and highlight the importance of CD4 T cells as well as CD8 T cells in reversing the immunosuppressive tumour microenvironment. Understanding which cancer-specific antigens can be recognized by T cells and the way that immune tolerance and the tumour microenvironment shape immune responses to cancer is vital for the future development of cancer therapies.</p>","PeriodicalId":72830,"journal":{"name":"Discovery immunology","volume":" ","pages":"kyac011"},"PeriodicalIF":0.0,"publicationDate":"2022-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10917189/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42238826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bench to Bedside: Modelling Inflammatory Arthritis. 长凳到床边:炎症性关节炎建模
Discovery immunology Pub Date : 2022-11-23 eCollection Date: 2023-01-01 DOI: 10.1093/discim/kyac010
Chiamaka I Chidomere, Mussarat Wahid, Samuel Kemble, Caroline Chadwick, Richard Thomas, Rowan S Hardy, Helen M McGettrick, Amy J Naylor
{"title":"Bench to Bedside: Modelling Inflammatory Arthritis.","authors":"Chiamaka I Chidomere, Mussarat Wahid, Samuel Kemble, Caroline Chadwick, Richard Thomas, Rowan S Hardy, Helen M McGettrick, Amy J Naylor","doi":"10.1093/discim/kyac010","DOIUrl":"10.1093/discim/kyac010","url":null,"abstract":"<p><p>Inflammatory arthritides such as rheumatoid arthritis are a major cause of disability. Pre-clinical murine models of inflammatory arthritis continue to be invaluable tools with which to identify and validate therapeutic targets and compounds. The models used are well-characterised and, whilst none truly recapitulates the human disease, they are crucial to researchers seeking to identify novel therapeutic targets and to test efficacy during preclinical trials of novel drug candidates. The arthritis parameters recorded during clinical trials and routine clinical patient care have been carefully standardised, allowing comparison between centres, trials, and treatments. Similar standardisation of scoring across <i>in vivo</i> models has not occurred, which makes interpretation of published results, and comparison between arthritis models, challenging. Here, we include a detailed and readily implementable arthritis scoring system, that increases the breadth of arthritis characteristics captured during experimental arthritis and supports responsive and adaptive monitoring of disease progression in murine models of inflammatory arthritis. In addition, we reference the wider ethical and experimental factors researchers should consider during the experimental design phase, with emphasis on the continued importance of replacement, reduction, and refinement of animal usage in arthritis research.</p>","PeriodicalId":72830,"journal":{"name":"Discovery immunology","volume":" ","pages":"kyac010"},"PeriodicalIF":0.0,"publicationDate":"2022-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10917191/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43011284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Revealing stromal and lymphoid sources of Col3a1-expression during inflammation using a novel reporter mouse. 使用新型报告小鼠揭示炎症过程中Col3a1表达的基质和淋巴来源
Discovery immunology Pub Date : 2022-11-21 eCollection Date: 2022-01-01 DOI: 10.1093/discim/kyac008
Larissa C da Rosa, Hannah E Scales, Sangeet Makhija, Katie Sutherland, Robert A Benson, James M Brewer, Paul Garside
{"title":"Revealing stromal and lymphoid sources of <i>Col3a1</i>-expression during inflammation using a novel reporter mouse.","authors":"Larissa C da Rosa, Hannah E Scales, Sangeet Makhija, Katie Sutherland, Robert A Benson, James M Brewer, Paul Garside","doi":"10.1093/discim/kyac008","DOIUrl":"10.1093/discim/kyac008","url":null,"abstract":"<p><p>One of the earliest signs of dysregulation of the homeostatic process of fibrosis, associated with pathology in chronic conditions such as rheumatoid arthritis, is the overexpression of collagen type III (COL-3). Critically, there is still relatively little known regarding the identity of the cell types expressing the gene encoding COL-3 (<i>Col3a1</i>). Identifying and characterizing <i>Col3a1</i>-expressing cells during the development of fibrosis could reveal new targets for the diagnosis and treatment of fibrosis-related pathologies. As such, a reporter mouse expressing concomitantly <i>Col3a1</i> and mKate-2, a fluorescent protein, was generated. Using models of footpad inflammation, we demonstrated its effectiveness as a tool to measure the expression of COL-3 during the repair process and provided an initial characterization of some of the stromal and immune cells responsible for <i>Col3a1</i> expression.</p>","PeriodicalId":72830,"journal":{"name":"Discovery immunology","volume":" ","pages":"kyac008"},"PeriodicalIF":0.0,"publicationDate":"2022-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10917174/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49030363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Immune cell involvement in brown adipose tissue functions. 免疫细胞参与棕色脂肪组织功能
Discovery immunology Pub Date : 2022-10-31 eCollection Date: 2022-01-01 DOI: 10.1093/discim/kyac007
Adeline Bertola, Alexandre Gallerand, Stoyan Ivanov
{"title":"Immune cell involvement in brown adipose tissue functions.","authors":"Adeline Bertola, Alexandre Gallerand, Stoyan Ivanov","doi":"10.1093/discim/kyac007","DOIUrl":"10.1093/discim/kyac007","url":null,"abstract":"<p><p>Brown adipose tissue (BAT) contains many immune cells. The presence of macrophages, monocytes, dendritic cells, T cells, B cells, and mast cells was documented in BAT. However, in comparison to white adipose tissue, relatively little is known on the impact of immune cells on BAT function. By directly interacting with BAT stromal cells, or by secreting pro- and anti-inflammatory mediators, immune cells modulate BAT activation and subsequently influence on adaptative thermogenesis and heat generation. In the current manuscript, we will focus on the diversity and functions of BAT immune cells.</p>","PeriodicalId":72830,"journal":{"name":"Discovery immunology","volume":" ","pages":"kyac007"},"PeriodicalIF":0.0,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10917225/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46283551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The role of interleukin-33 in organ fibrosis. 白细胞介素33在器官纤维化中的作用
Discovery immunology Pub Date : 2022-09-26 eCollection Date: 2022-01-01 DOI: 10.1093/discim/kyac006
Samuele Di Carmine, Molly M Scott, Mairi H McLean, Henry J McSorley
{"title":"The role of interleukin-33 in organ fibrosis.","authors":"Samuele Di Carmine, Molly M Scott, Mairi H McLean, Henry J McSorley","doi":"10.1093/discim/kyac006","DOIUrl":"10.1093/discim/kyac006","url":null,"abstract":"<p><p>Interleukin (IL)-33 is highly expressed in the nucleus of cells present at barrier sites and signals via the ST2 receptor. IL-33 signalling via ST2 is essential for return to tissue homeostasis after acute inflammation, promoting fibrinogenesis and wound healing at injury sites. However, this wound-healing response becomes aberrant during chronic or sustained inflammation, leading to transforming growth factor beta (TGF-β) release, excessive extracellular matrix deposition, and fibrosis. This review addresses the role of the IL-33 pathway in fibrotic diseases of the lung, liver, gastrointestinal tract, skin, kidney and heart. In the lung and liver, IL-33 release leads to the activation of pro-fibrotic TGF-β, and in these sites, IL-33 has clear pro-fibrotic roles. In the gastrointestinal tract, skin, and kidney, the role of IL-33 is more complex, being both pro-fibrotic and tissue protective. Finally, in the heart, IL-33 serves cardioprotective functions by favouring tissue healing and preventing cardiomyocyte death. Altogether, this review indicates the presence of an unclear and delicate balance between resolving and pro-fibrotic capabilities of IL-33, which has a central role in the modulation of type 2 inflammation and fibrosis in response to tissue injury.</p>","PeriodicalId":72830,"journal":{"name":"Discovery immunology","volume":" ","pages":"kyac006"},"PeriodicalIF":0.0,"publicationDate":"2022-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10917208/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44084725","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Looking into the IL-1 of the storm: are inflammasomes the link between immunothrombosis and hyperinflammation in cytokine storm syndromes? 风暴中的IL-1:炎症小体是细胞因子风暴综合征中免疫血栓形成和高炎症之间的联系吗?
Discovery immunology Pub Date : 2022-09-14 eCollection Date: 2022-01-01 DOI: 10.1093/discim/kyac005
Tara A Gleeson, Erik Nordling, Christina Kaiser, Catherine B Lawrence, David Brough, Jack P Green, Stuart M Allan
{"title":"Looking into the IL-1 of the storm: are inflammasomes the link between immunothrombosis and hyperinflammation in cytokine storm syndromes?","authors":"Tara A Gleeson, Erik Nordling, Christina Kaiser, Catherine B Lawrence, David Brough, Jack P Green, Stuart M Allan","doi":"10.1093/discim/kyac005","DOIUrl":"10.1093/discim/kyac005","url":null,"abstract":"<p><p>Inflammasomes and the interleukin (IL)-1 family of cytokines are key mediators of both inflammation and immunothrombosis. Inflammasomes are responsible for the release of the pro-inflammatory cytokines IL-1β and IL-18, as well as releasing tissue factor (TF), a pivotal initiator of the extrinsic coagulation cascade. Uncontrolled production of inflammatory cytokines results in what is known as a \"cytokine storm\" leading to hyperinflammatory disease. Cytokine storms can complicate a variety of diseases and results in hypercytokinemia, coagulopathies, tissue damage, multiorgan failure, and death. Patients presenting with cytokine storm syndromes have a high mortality rate, driven in part by disseminated intravascular coagulation (DIC). While our knowledge on the factors propagating cytokine storms is increasing, how cytokine storm influences DIC remains unknown, and therefore treatments for diseases, where these aspects are a key feature are limited, with most targeting specific cytokines. Currently, no therapies target the immunothrombosis aspect of hyperinflammatory syndromes. Here we discuss how targeting the inflammasome and pyroptosis may be a novel therapeutic strategy for the treatment of hyperinflammation and its associated pathologies.</p>","PeriodicalId":72830,"journal":{"name":"Discovery immunology","volume":" ","pages":"kyac005"},"PeriodicalIF":0.0,"publicationDate":"2022-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10917224/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46924100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信