{"title":"Architecture-Agnostic Untrained Network Priors for Image Reconstruction with Frequency Regularization.","authors":"Yilin Liu, Yunkui Pang, Jiang Li, Yong Chen, Pew-Thian Yap","doi":"10.1007/978-3-031-72630-9_20","DOIUrl":"10.1007/978-3-031-72630-9_20","url":null,"abstract":"<p><p>Untrained networks inspired by deep image priors have shown promising capabilities in recovering high-quality images from noisy or partial measurements <i>without requiring training sets</i>. Their success is widely attributed to implicit regularization due to the spectral bias of suitable network architectures. However, the application of such network-based priors often entails superfluous architectural decisions, risks of overfitting, and lengthy optimization processes, all of which hinder their practicality. To address these challenges, we propose efficient architecture-agnostic techniques to directly modulate the spectral bias of network priors: 1) bandwidth-constrained input, 2) bandwidth-controllable upsamplers, and 3) Lipschitz-regularized convolutional layers. We show that, with <i>just a few lines of code</i>, we can reduce overfitting in underperforming architectures and close performance gaps with high-performing counterparts, minimizing the need for extensive architecture tuning. This makes it possible to employ a more <i>compact</i> model to achieve performance similar or superior to larger models while reducing runtime. Demonstrated on inpainting-like MRI reconstruction task, our results signify for the first time that architectural biases, overfitting, and runtime issues of untrained network priors can be simultaneously addressed without architectural modifications. Our code is publicly available .</p>","PeriodicalId":72676,"journal":{"name":"Computer vision - ECCV ... : ... European Conference on Computer Vision : proceedings. European Conference on Computer Vision","volume":"15072 ","pages":"341-358"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11670387/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142904254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Zero-Shot Adaptation for Approximate Posterior Sampling of Diffusion Models in Inverse Problems.","authors":"Yaşar Utku Alçalar, Mehmet Akçakaya","doi":"10.1007/978-3-031-73010-8_26","DOIUrl":"https://doi.org/10.1007/978-3-031-73010-8_26","url":null,"abstract":"<p><p>Diffusion models have emerged as powerful generative techniques for solving inverse problems. Despite their success in a variety of inverse problems in imaging, these models require many steps to converge, leading to slow inference time. Recently, there has been a trend in diffusion models for employing sophisticated noise schedules that involve more frequent iterations of timesteps at lower noise levels, thereby improving image generation and convergence speed. However, application of these ideas for solving inverse problems with diffusion models remain challenging, as these noise schedules do not perform well when using empirical tuning for the forward model log-likelihood term weights. To tackle these challenges, we propose zero-shot approximate posterior sampling (ZAPS) that leverages connections to zero-shot physics-driven deep learning. ZAPS fixes the number of sampling steps, and uses zero-shot training with a physics-guided loss function to learn log-likelihood weights at each irregular timestep. We apply ZAPS to the recently proposed diffusion posterior sampling method as baseline, though ZAPS can also be used with other posterior sampling diffusion models. We further approximate the Hessian of the logarithm of the prior using a diagonalization approach with learnable diagonal entries for computational efficiency. These parameters are optimized over a fixed number of epochs with a given computational budget. Our results for various noisy inverse problems, including Gaussian and motion deblurring, inpainting, and super-resolution show that ZAPS reduces inference time, provides robustness to irregular noise schedules and improves reconstruction quality. Code is available at https://github.com/ualcalar17/ZAPS.</p>","PeriodicalId":72676,"journal":{"name":"Computer vision - ECCV ... : ... European Conference on Computer Vision : proceedings. European Conference on Computer Vision","volume":"15141 ","pages":"444-460"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11736016/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143017349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Spatial and Visual Perspective-Taking via View Rotation and Relation Reasoning for Embodied Reference Understanding","authors":"Cheng Shi, Sibei Yang","doi":"10.1007/978-3-031-20059-5_12","DOIUrl":"https://doi.org/10.1007/978-3-031-20059-5_12","url":null,"abstract":"","PeriodicalId":72676,"journal":{"name":"Computer vision - ECCV ... : ... European Conference on Computer Vision : proceedings. European Conference on Computer Vision","volume":"19 1","pages":"201-218"},"PeriodicalIF":0.0,"publicationDate":"2023-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78452878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yu Zhang, Junle Yu, Xiaolin Huang, Wenhui Zhou, Ji Hou
{"title":"PCR-CG: Point Cloud Registration via Deep Explicit Color and Geometry","authors":"Yu Zhang, Junle Yu, Xiaolin Huang, Wenhui Zhou, Ji Hou","doi":"10.1007/978-3-031-20080-9_26","DOIUrl":"https://doi.org/10.1007/978-3-031-20080-9_26","url":null,"abstract":"","PeriodicalId":72676,"journal":{"name":"Computer vision - ECCV ... : ... European Conference on Computer Vision : proceedings. European Conference on Computer Vision","volume":"73 1","pages":"443-459"},"PeriodicalIF":0.0,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88805254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sanghyun Woo, KwanYong Park, Seoung Wug Oh, In-So Kweon, Joon-Young Lee
{"title":"Bridging Images and Videos: A Simple Learning Framework for Large Vocabulary Video Object Detection","authors":"Sanghyun Woo, KwanYong Park, Seoung Wug Oh, In-So Kweon, Joon-Young Lee","doi":"10.1007/978-3-031-19806-9_14","DOIUrl":"https://doi.org/10.1007/978-3-031-19806-9_14","url":null,"abstract":"","PeriodicalId":72676,"journal":{"name":"Computer vision - ECCV ... : ... European Conference on Computer Vision : proceedings. European Conference on Computer Vision","volume":"46 1","pages":"238-258"},"PeriodicalIF":0.0,"publicationDate":"2022-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83742480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Union-Set Multi-source Model Adaptation for Semantic Segmentation","authors":"Zongyao Li, Ren Togo, Takahiro Ogawa, M. Haseyama","doi":"10.1007/978-3-031-19818-2_33","DOIUrl":"https://doi.org/10.1007/978-3-031-19818-2_33","url":null,"abstract":"","PeriodicalId":72676,"journal":{"name":"Computer vision - ECCV ... : ... European Conference on Computer Vision : proceedings. European Conference on Computer Vision","volume":"25 1","pages":"579-595"},"PeriodicalIF":0.0,"publicationDate":"2022-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74570051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}