Bridging the Pathology Domain Gap: Efficiently Adapting CLIP for Pathology Image Analysis with Limited Labeled Data.

Zhengfeng Lai, Joohi Chauhan, Brittany N Dugger, Chen-Nee Chuah
{"title":"Bridging the Pathology Domain Gap: Efficiently Adapting CLIP for Pathology Image Analysis with Limited Labeled Data.","authors":"Zhengfeng Lai, Joohi Chauhan, Brittany N Dugger, Chen-Nee Chuah","doi":"10.1007/978-3-031-73039-9_15","DOIUrl":null,"url":null,"abstract":"<p><p>Contrastive Language-Image Pre-training (CLIP) has shown its proficiency in acquiring distinctive visual representations and exhibiting strong generalization across diverse vision tasks. However, its effectiveness in pathology image analysis, particularly with limited labeled data, remains an ongoing area of investigation due to challenges associated with significant domain shifts and catastrophic forgetting. Thus, it is imperative to devise efficient adaptation strategies in this domain to enable scalable analysis. In this study, we introduce Path-CLIP, a framework tailored for a swift adaptation of CLIP to various pathology tasks. Firstly, we propose Residual Feature Refinement (RFR) with a dynamically adjustable ratio to effectively integrate and balance source and task-specific knowledge. Secondly, we introduce Hidden Representation Perturbation (HRP) and Dual-view Vision Contrastive (DVC) techniques to mitigate overfitting issues. Finally, we present the Doublet Multimodal Contrastive Loss (DMCL) for fine-tuning CLIP for pathology tasks. We demonstrate that Path-CLIP adeptly adapts pre-trained CLIP to downstream pathology tasks, yielding competitive results. Specifically, Path-CLIP achieves over +<b>19%</b> improvement in accuracy when utilizing mere <b>0.1%</b> of labeled data in PCam with only 10 minutes of fine-tuning while running on a single GPU.</p>","PeriodicalId":72676,"journal":{"name":"Computer vision - ECCV ... : ... European Conference on Computer Vision : proceedings. European Conference on Computer Vision","volume":"15122 ","pages":"256-273"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11949240/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer vision - ECCV ... : ... European Conference on Computer Vision : proceedings. European Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-73039-9_15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/31 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Contrastive Language-Image Pre-training (CLIP) has shown its proficiency in acquiring distinctive visual representations and exhibiting strong generalization across diverse vision tasks. However, its effectiveness in pathology image analysis, particularly with limited labeled data, remains an ongoing area of investigation due to challenges associated with significant domain shifts and catastrophic forgetting. Thus, it is imperative to devise efficient adaptation strategies in this domain to enable scalable analysis. In this study, we introduce Path-CLIP, a framework tailored for a swift adaptation of CLIP to various pathology tasks. Firstly, we propose Residual Feature Refinement (RFR) with a dynamically adjustable ratio to effectively integrate and balance source and task-specific knowledge. Secondly, we introduce Hidden Representation Perturbation (HRP) and Dual-view Vision Contrastive (DVC) techniques to mitigate overfitting issues. Finally, we present the Doublet Multimodal Contrastive Loss (DMCL) for fine-tuning CLIP for pathology tasks. We demonstrate that Path-CLIP adeptly adapts pre-trained CLIP to downstream pathology tasks, yielding competitive results. Specifically, Path-CLIP achieves over +19% improvement in accuracy when utilizing mere 0.1% of labeled data in PCam with only 10 minutes of fine-tuning while running on a single GPU.

对比语言-图像预训练(CLIP)在获取独特的视觉表征和在不同的视觉任务中表现出很强的泛化能力方面已显示出其能力。然而,在病理图像分析中,尤其是在标记数据有限的情况下,CLIP 的有效性仍是一个有待研究的领域,因为它面临着与重大领域转移和灾难性遗忘相关的挑战。因此,当务之急是在这一领域设计出高效的适应策略,以实现可扩展的分析。在本研究中,我们介绍了 Path-CLIP,这是一个专为 CLIP 快速适应各种病理任务而定制的框架。首先,我们提出了可动态调整比例的残差特征细化(RFR),以有效整合和平衡源知识与特定任务知识。其次,我们引入了隐藏表征扰动(HRP)和双视角视觉对比(DVC)技术,以缓解过拟合问题。最后,我们介绍了双倍多模态对比损失(DMCL),用于微调病理学任务的 CLIP。我们证明,Path-CLIP 能够使预先训练的 CLIP 适应下游病理学任务,并产生有竞争力的结果。具体来说,Path-CLIP 在 PCam 中仅使用了 0.1% 的标记数据,仅进行了 10 分钟的微调,就实现了超过 +19% 的准确率提升,同时还能在单 GPU 上运行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信