具有噪声感知拓扑一致性的组织病理图像半监督分割。

Meilong Xu, Xiaoling Hu, Saumya Gupta, Shahira Abousamra, Chao Chen
{"title":"具有噪声感知拓扑一致性的组织病理图像半监督分割。","authors":"Meilong Xu, Xiaoling Hu, Saumya Gupta, Shahira Abousamra, Chao Chen","doi":"10.1007/978-3-031-73229-4_16","DOIUrl":null,"url":null,"abstract":"<p><p>In digital pathology, segmenting densely distributed objects like glands and nuclei is crucial for downstream analysis. Since detailed pixel-wise annotations are very time-consuming, we need semi-supervised segmentation methods that can learn from unlabeled images. Existing semi-supervised methods are often prone to topological errors, <i>e.g</i>., missing or incorrectly merged/separated glands or nuclei. To address this issue, we propose <i>TopoSemiSeg</i>, the first semi-supervised method that learns the topological representation from unlabeled histopathology images. The major challenge is for unlabeled images; we only have predictions carrying noisy topology. To this end, we introduce a noise-aware topological consistency loss to align the representations of a teacher and a student model. By decomposing the topology of the prediction into signal topology and noisy topology, we ensure that the models learn the true topological signals and become robust to noise. Extensive experiments on public histopathology image datasets show the superiority of our method, especially on topology-aware evaluation metrics. Code is available at https://github.com/Melon-Xu/TopoSemiSeg.</p>","PeriodicalId":72676,"journal":{"name":"Computer vision - ECCV ... : ... European Conference on Computer Vision : proceedings. European Conference on Computer Vision","volume":"15136 ","pages":"271-289"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12185923/pdf/","citationCount":"0","resultStr":"{\"title\":\"Semi-supervised Segmentation of Histopathology Images with Noise-Aware Topological Consistency.\",\"authors\":\"Meilong Xu, Xiaoling Hu, Saumya Gupta, Shahira Abousamra, Chao Chen\",\"doi\":\"10.1007/978-3-031-73229-4_16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In digital pathology, segmenting densely distributed objects like glands and nuclei is crucial for downstream analysis. Since detailed pixel-wise annotations are very time-consuming, we need semi-supervised segmentation methods that can learn from unlabeled images. Existing semi-supervised methods are often prone to topological errors, <i>e.g</i>., missing or incorrectly merged/separated glands or nuclei. To address this issue, we propose <i>TopoSemiSeg</i>, the first semi-supervised method that learns the topological representation from unlabeled histopathology images. The major challenge is for unlabeled images; we only have predictions carrying noisy topology. To this end, we introduce a noise-aware topological consistency loss to align the representations of a teacher and a student model. By decomposing the topology of the prediction into signal topology and noisy topology, we ensure that the models learn the true topological signals and become robust to noise. Extensive experiments on public histopathology image datasets show the superiority of our method, especially on topology-aware evaluation metrics. Code is available at https://github.com/Melon-Xu/TopoSemiSeg.</p>\",\"PeriodicalId\":72676,\"journal\":{\"name\":\"Computer vision - ECCV ... : ... European Conference on Computer Vision : proceedings. European Conference on Computer Vision\",\"volume\":\"15136 \",\"pages\":\"271-289\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12185923/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer vision - ECCV ... : ... European Conference on Computer Vision : proceedings. European Conference on Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-031-73229-4_16\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer vision - ECCV ... : ... European Conference on Computer Vision : proceedings. European Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-73229-4_16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/25 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在数字病理学中,分割密集分布的物体,如腺体和细胞核,对下游分析至关重要。由于详细的逐像素注释非常耗时,我们需要可以从未标记的图像中学习的半监督分割方法。现有的半监督方法往往容易出现拓扑错误,例如缺失或不正确地合并/分离腺体或核。为了解决这个问题,我们提出了TopoSemiSeg,这是第一个从未标记的组织病理学图像中学习拓扑表示的半监督方法。主要的挑战是对于未标记的图像;我们只有带有噪声拓扑的预测。为此,我们引入了噪声感知的拓扑一致性损失来对齐教师和学生模型的表示。通过将预测拓扑分解为信号拓扑和噪声拓扑,确保模型学习到真实的拓扑信号,并对噪声具有鲁棒性。在公共组织病理学图像数据集上进行的大量实验表明,我们的方法具有优越性,特别是在拓扑感知评估指标方面。代码可从https://github.com/Melon-Xu/TopoSemiSeg获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semi-supervised Segmentation of Histopathology Images with Noise-Aware Topological Consistency.

In digital pathology, segmenting densely distributed objects like glands and nuclei is crucial for downstream analysis. Since detailed pixel-wise annotations are very time-consuming, we need semi-supervised segmentation methods that can learn from unlabeled images. Existing semi-supervised methods are often prone to topological errors, e.g., missing or incorrectly merged/separated glands or nuclei. To address this issue, we propose TopoSemiSeg, the first semi-supervised method that learns the topological representation from unlabeled histopathology images. The major challenge is for unlabeled images; we only have predictions carrying noisy topology. To this end, we introduce a noise-aware topological consistency loss to align the representations of a teacher and a student model. By decomposing the topology of the prediction into signal topology and noisy topology, we ensure that the models learn the true topological signals and become robust to noise. Extensive experiments on public histopathology image datasets show the superiority of our method, especially on topology-aware evaluation metrics. Code is available at https://github.com/Melon-Xu/TopoSemiSeg.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信