Computer methods and programs in biomedicine update最新文献

筛选
英文 中文
Feature selection based on Mahalanobis distance for early Parkinson disease classification 基于马氏距离的特征选择用于早期帕金森病分类
Computer methods and programs in biomedicine update Pub Date : 2025-01-01 DOI: 10.1016/j.cmpbup.2025.100177
Mustafa Noaman Kadhim , Dhiah Al-Shammary , Ahmed M. Mahdi , Ayman Ibaida
{"title":"Feature selection based on Mahalanobis distance for early Parkinson disease classification","authors":"Mustafa Noaman Kadhim ,&nbsp;Dhiah Al-Shammary ,&nbsp;Ahmed M. Mahdi ,&nbsp;Ayman Ibaida","doi":"10.1016/j.cmpbup.2025.100177","DOIUrl":"10.1016/j.cmpbup.2025.100177","url":null,"abstract":"<div><div>Standard classifiers struggle with high-dimensional datasets due to increased computational complexity, difficulty in visualization and interpretation, and challenges in handling redundant or irrelevant features. This paper proposes a novel feature selection method based on the Mahalanobis distance for Parkinson's disease (PD) classification. The proposed feature selection identifies relevant features by measuring their distance from the dataset's mean vector, considering the covariance structure. Features with larger Mahalanobis distances are deemed more relevant as they exhibit greater discriminative power relative to the dataset's distribution, aiding in effective feature subset selection. Significant improvements in classification performance were observed across all models. On the \"Parkinson Disease Classification Dataset\", the feature set was reduced from 22 to 11 features, resulting in accuracy improvements ranging from 10.17 % to 20.34 %, with the K-Nearest Neighbors (KNN) classifier achieving the highest accuracy of 98.31 %. Similarly, on the \"Parkinson Dataset with Replicated Acoustic Features\", the feature set was reduced from 45 to 18 features, achieving accuracy improvements ranging from 1.38 % to 13.88 %, with the Random Forest (RF) classifier achieving the best accuracy of 95.83 %. By identifying convergence features and eliminating divergence features, the proposed method effectively reduces dimensionality while maintaining or improving classifier performance. Additionally, the proposed feature selection method significantly reduces execution time, making it highly suitable for real-time applications in medical diagnostics, where timely and accurate disease identification is critical for improving patient outcomes.</div></div>","PeriodicalId":72670,"journal":{"name":"Computer methods and programs in biomedicine update","volume":"7 ","pages":"Article 100177"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143179429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A sustainable neuromorphic framework for disease diagnosis using digital medical imaging 一个可持续的神经形态框架,用于疾病诊断使用数字医学成像
Computer methods and programs in biomedicine update Pub Date : 2025-01-01 DOI: 10.1016/j.cmpbup.2024.100171
Rutwik Gulakala, Marcus Stoffel
{"title":"A sustainable neuromorphic framework for disease diagnosis using digital medical imaging","authors":"Rutwik Gulakala,&nbsp;Marcus Stoffel","doi":"10.1016/j.cmpbup.2024.100171","DOIUrl":"10.1016/j.cmpbup.2024.100171","url":null,"abstract":"<div><h3>Background and objective:</h3><div>In the diagnosis of medical images, neural network classifications can support rapid diagnosis together with existing imaging methods. Although current state-of-the-art deep learning methods can contribute to this image recognition, the aim of the present study is to develop a general classification framework with brain-inspired neural networks. Following this intention, spiking neural network models, also known as third-generation models, are included here to capitalize on their sparse characteristics and capacity to significantly decrease energy consumption. Inspired by the recent development of neuromorphic hardware, a sustainable neural network framework is proposed, leading to an energy reduction down to a thousandth compared to the current state-of-the-art second-generation counterpart of artificial neural networks. Making use of sparse signal transmissions as in the human brain, a neuromorphic algorithm for imaging diagnostics is introduced.</div></div><div><h3>Methods:</h3><div>A novel, sustainable, brain-inspired spiking neural network is proposed to perform the multi-class classification of digital medical images. The framework comprises branched and densely connected layers described by a Leaky-Integrate and Fire (LIF) neuron model. Backpropagation of discontinuous spiking activations in the forward pass is achieved by surrogate gradients, in this case, fast sigmoid. The data for the spiking neural network is encoded into binary spikes with a latency encoding strategy. The proposed model is evaluated on a publicly available dataset of digital X-rays of chest and compared with an equivalent classical neural network. The models are trained using enhanced and pre-processed X-ray images and are evaluated based on classification metrics.</div></div><div><h3>Results:</h3><div>The proposed neuromorphic framework had an extremely high classification accuracy of 99.22<span><math><mtext>%</mtext></math></span> on an unseen test set, together with high precision and recall figures. The framework achieves this accuracy, all the while consuming 1000 times less electrical power than classical neural network architectures.</div></div><div><h3>Conclusion:</h3><div>Though there is a loss of information due to encoding, the proposed neuromorphic framework has achieved accuracy close to its second-generation counterpart. Therefore, the benefit of the proposed framework is the high accuracy of classification while consuming a thousandth of the power, enabling a sustainable and accessible add-on for the available diagnostic tools, such as medical imaging equipment, to achieve rapid diagnosis.</div></div>","PeriodicalId":72670,"journal":{"name":"Computer methods and programs in biomedicine update","volume":"7 ","pages":"Article 100171"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143180351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A computer-based method for the automatic identification of the dimensional features of human cervical vertebrae 一种基于计算机的人体颈椎尺寸特征自动识别方法
Computer methods and programs in biomedicine update Pub Date : 2025-01-01 DOI: 10.1016/j.cmpbup.2024.100175
Nicola Cappetti , Luca Di Angelo , Carlotta Fontana , Antonio Marzola
{"title":"A computer-based method for the automatic identification of the dimensional features of human cervical vertebrae","authors":"Nicola Cappetti ,&nbsp;Luca Di Angelo ,&nbsp;Carlotta Fontana ,&nbsp;Antonio Marzola","doi":"10.1016/j.cmpbup.2024.100175","DOIUrl":"10.1016/j.cmpbup.2024.100175","url":null,"abstract":"<div><h3>Background and objective</h3><div>Accurately measuring cervical vertebrae dimensions is crucial for diagnosing conditions, planning surgeries, and studying morphological variations related to gender, age, and ethnicity. However, traditional manual measurement methods, due to their labour-intensive nature, time-consuming process, and susceptibility to operator variability, often fall short in providing the objectivity required for reliable measurements. This study addresses these limitations by introducing a novel computer-based method for automatically identifying the dimensional features of human cervical vertebrae, leveraging 3D geometric models obtained from CT or 3D scanning.</div></div><div><h3>Methods</h3><div>The proposed approach involves defining a local coordinate system and establishing a set of rules and parameters to evaluate the typical dimensional features of the vertebral body, foramen, and spinous process in the sagittal and coronal planes of the high-density point cloud of the cervical vertebra model. This system provides a consistent measurement reference frame, improving the method's reliability and objectivity. Based on this reference system, the method automates the traditional standard protocol, typically performed manually by radiologists, through an algorithmic approach.</div></div><div><h3>Results</h3><div>The performance of the computer-based method was compared with the traditional manual approach using a dataset of nine complete cervical tracts. Manual measurements were conducted following a defined protocol. The manual method demonstrated poor repeatability and reproducibility, with substantial differences between the minimum and maximum values for the measured features in intra- and inter-operator evaluations. In contrast, the measurements obtained with the proposed computer-based method were consistent and repeatable.</div></div><div><h3>Conclusions</h3><div>The proposed computer-based method provides a more reliable and objective approach for measuring the dimensional features of cervical vertebrae. It establishes a procedural standard for deducing the morphological characteristics of cervical vertebrae, with significant implications for clinical applications, such as surgical planning and diagnosis, as well as for forensic anthropology and spinal anatomy research. Further refinement and validation of the algorithmic rules and investigations into the influence of morphological abnormalities are necessary to improve the method's accuracy.</div></div>","PeriodicalId":72670,"journal":{"name":"Computer methods and programs in biomedicine update","volume":"7 ","pages":"Article 100175"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143180352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamics and optimal control of fractional-order monkeypox epidemic model with social distancing habits and public awareness 具有社会距离习惯和公众意识的分数阶猴痘流行模型动力学及最优控制
Computer methods and programs in biomedicine update Pub Date : 2025-01-01 DOI: 10.1016/j.cmpbup.2025.100187
Raqqasyi Rahmatullah Musafir, Agus Suryanto, Isnani Darti, Trisilowati
{"title":"Dynamics and optimal control of fractional-order monkeypox epidemic model with social distancing habits and public awareness","authors":"Raqqasyi Rahmatullah Musafir,&nbsp;Agus Suryanto,&nbsp;Isnani Darti,&nbsp;Trisilowati","doi":"10.1016/j.cmpbup.2025.100187","DOIUrl":"10.1016/j.cmpbup.2025.100187","url":null,"abstract":"<div><div>In this article, we propose a fractional-order monkeypox epidemic model incorporating social distancing habits and public awareness. The model includes the addition of a protected compartment and a saturated transmission rate. We implement a power rescaling for the parameters of the proposed model to ensure dimensional consistency. We have investigated the existence, uniqueness, nonnegativity, and boundedness of the solution. The model features monkeypox-free, human-endemic, and endemic equilibrium points, which depend on the order of derivative. The existence and stability of each equilibrium point have been analyzed locally and globally, depending on the basic reproduction number. Moreover, the basic reproduction number of the model also depends on the order of derivative. We carried out a case study using real data showing that the fractional-order model performs better than the first-order model in calibration and forecasting. Numerical simulations confirm the stability properties of each equilibrium point with respect to the specified parameter values. Numerical simulations also demonstrate that the social distancing habits can reduce monkeypox cases in the early stages, but do not significantly alter the basic reproduction number. Meanwhile, public awareness can substantially modify the basic reproduction number, shifting the endemic condition towards a disease-free state, although its impact on case reduction in the early period is not significant. We also implemented optimal control strategies for vector culling and vaccination in the proposed model. We have solved the optimal control problem, and the simulation results show that the combination of both controls yields the minimum cost with better effectiveness compared to the controls implemented separately.</div></div>","PeriodicalId":72670,"journal":{"name":"Computer methods and programs in biomedicine update","volume":"7 ","pages":"Article 100187"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143609293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MORIX: Machine learning-aided framework for lethality detection and MORtality inference with eXplainable artificial intelligence in MAFLD subjects 机器学习辅助框架的致命性检测和死亡率推理与可解释的人工智能在MAFLD科目
Computer methods and programs in biomedicine update Pub Date : 2025-01-01 DOI: 10.1016/j.cmpbup.2024.100176
Domenico Lofù , Paolo Sorino , Tommaso Colafiglio , Caterina Bonfiglio , Rossella Donghia , Gianluigi Giannelli , Angela Lombardi , Tommaso Di Noia , Eugenio Di Sciascio , Fedelucio Narducci
{"title":"MORIX: Machine learning-aided framework for lethality detection and MORtality inference with eXplainable artificial intelligence in MAFLD subjects","authors":"Domenico Lofù ,&nbsp;Paolo Sorino ,&nbsp;Tommaso Colafiglio ,&nbsp;Caterina Bonfiglio ,&nbsp;Rossella Donghia ,&nbsp;Gianluigi Giannelli ,&nbsp;Angela Lombardi ,&nbsp;Tommaso Di Noia ,&nbsp;Eugenio Di Sciascio ,&nbsp;Fedelucio Narducci","doi":"10.1016/j.cmpbup.2024.100176","DOIUrl":"10.1016/j.cmpbup.2024.100176","url":null,"abstract":"<div><div>Metabolic dysfunction-associated fatty liver disease (MAFLD) introduces new diagnostic criteria for fatty liver disease that are independent of alcohol consumption and viral hepatitis infection. Therefore, investigating how biochemical and anthropometric factors influence mortality in MAFLD subjects is of significant interest. In this work, we propose MORIX, an Artificial Intelligence-based framework capable of predicting fatal mortality outcomes in subjects with MAFLD. MORIX utilizes data from epidemiological datasets containing carefully selected anthropometric and biochemical information. This selection is achieved through Recursive Feature Elimination (RFE) using a Random Forest (RF) to train Machine Learning (ML) algorithms and provide a mortality risk (Yes/No) output. To provide physicians with a valuable tool, MORIX was trained and tested on a dataset of MAFLD subjects, comparing five different models: Random Forest (RF), eXtreme Gradient Boosting (XGB), Support Vector Machine (SVM), Multilayer Perceptron (MLP), and Light Gradient Boosting Model (LGBM) in a 5-fold cross-validation training strategy. Experimental results identified the RF as the best model, achieving a high accuracy for both mortality risks predicted. Additionally, an eXplainable Artificial Intelligence (XAI) analysis was conducted to clarify the diagnostic logic of the RF model and to assess the impact of each feature to the prediction. Moreover, a web application was developed to predict mortality risk and provide explanations of how the input features influenced the final prediction. In conclusion, the MORIX framework is easy to apply, and the required parameters are readily available in healthcare datasets, making it a practical tool for medical professionals.</div></div>","PeriodicalId":72670,"journal":{"name":"Computer methods and programs in biomedicine update","volume":"7 ","pages":"Article 100176"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143180357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Smart product service systems for remote patient monitoring under uncertainty: A hierarchical framework from a healthcare provider perspective 不确定性下用于远程患者监测的智能产品服务系统:从医疗保健提供者的角度来看的分层框架
Computer methods and programs in biomedicine update Pub Date : 2025-01-01 DOI: 10.1016/j.cmpbup.2024.100174
Yeneneh Tamirat Negash , Faradilah Hanum , Liria Salome Calahorrano Sarmiento
{"title":"Smart product service systems for remote patient monitoring under uncertainty: A hierarchical framework from a healthcare provider perspective","authors":"Yeneneh Tamirat Negash ,&nbsp;Faradilah Hanum ,&nbsp;Liria Salome Calahorrano Sarmiento","doi":"10.1016/j.cmpbup.2024.100174","DOIUrl":"10.1016/j.cmpbup.2024.100174","url":null,"abstract":"<div><h3>Background</h3><div>This study contributes to the integration of smart product service systems (smart PSSs) for remote patient monitoring (RPM). Integrating smart PSSs into RPM improves service delivery by enabling personalized care plans and shaping a patient-centered workflow for intelligent RPM. However, a gap exists in identifying intelligent RPM attributes and understanding their interrelationships. In addition, prior studies of RPM have yielded mixed results, with some studies demonstrating positive impacts and others showing no effect or even negative consequences on patient health. This inconsistency highlights the need for further investigation into how RPM systems are designed and utilized.</div></div><div><h3>Objectives</h3><div>First, the proposed intelligent RPM development criteria are validated through a qualitative assessment. Second, the interrelationships among intelligent RPM attributes are analyzed. Finally, the driving factors of intelligent RPM development are identified.</div></div><div><h3>Methods</h3><div>A hybrid methodology that combines the fuzzy Delphi method (FDM), the fuzzy decision-making trial and evaluation laboratory (FDEMATEL), and an analytical network process (ANP) is introduced to establish a hierarchical model of intelligent RPM attributes. Thirty healthcare industry experts specializing in chronic disease management participated in the study. Linguistic variables were utilized to manage the uncertainty inherent in expert opinions.</div></div><div><h3>Results</h3><div>The cause group encompassed operational efficiency, enhanced analytics, and sustainable service management, whereas the effect group comprised patient satisfaction and platform technology. The driving criteria included personalized treatment plans, real-time monitoring, mobile app development, and accessibility.</div></div><div><h3>Conclusion</h3><div>This study advances the understanding of how smart PSSs can be integrated into healthcare delivery. The developed hierarchical framework provides a roadmap for healthcare providers to implement and optimize intelligent RPM systems.</div></div>","PeriodicalId":72670,"journal":{"name":"Computer methods and programs in biomedicine update","volume":"7 ","pages":"Article 100174"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143180354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ECgMLP: A novel gated MLP model for enhanced endometrial cancer diagnosis ECgMLP:一种增强子宫内膜癌诊断的新型门控MLP模型
Computer methods and programs in biomedicine update Pub Date : 2025-01-01 DOI: 10.1016/j.cmpbup.2025.100181
Md. Alif Sheakh , Sami Azam , Mst. Sazia Tahosin , Asif Karim , Sidratul Montaha , Kayes Uddin Fahim , Niusha Shafiabady , Mirjam Jonkman , Friso De Boer
{"title":"ECgMLP: A novel gated MLP model for enhanced endometrial cancer diagnosis","authors":"Md. Alif Sheakh ,&nbsp;Sami Azam ,&nbsp;Mst. Sazia Tahosin ,&nbsp;Asif Karim ,&nbsp;Sidratul Montaha ,&nbsp;Kayes Uddin Fahim ,&nbsp;Niusha Shafiabady ,&nbsp;Mirjam Jonkman ,&nbsp;Friso De Boer","doi":"10.1016/j.cmpbup.2025.100181","DOIUrl":"10.1016/j.cmpbup.2025.100181","url":null,"abstract":"<div><div>Endometrial cancеr is the fourth fastеst-growing cancеr among women worldwide, affecting the uterus's lining. This research proposes a novel approach called ECgMLP for the automated diagnosis of endometrial cancer by analyzing histopathological images. Several preprocessing techniques are employed to increase the quality of the images, including normalization, Non-Local Means denoising, and alpha-beta enhancement. Effective segmentation is achieved through a combination of Otsu thresholding, morphological operations, distance transformations, and the watershed approach to identify major regions of interest. Through a sequence of blocks, the ECgMLP architecture processes input images to remove unimportant patterns. Model hyperparameters are improved via ablation research. The evaluations show a maximum accuracy of 99.26 % for identifying multi-class histopathological categories of endometrial tissue, which is higher than the previous best technique. The proposed model offers an automated, correct diagnosis, enhancing clinical processes. This proposition could be added to the current tools for finding endometrial cancer early, leading to better patient outcomes.</div></div>","PeriodicalId":72670,"journal":{"name":"Computer methods and programs in biomedicine update","volume":"7 ","pages":"Article 100181"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143180356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis of preprocessing for Generative Adversarial Networks: A case study on color fundoscopy to fluorescein angiography image-to-image translation 生成对抗网络的预处理分析:彩色眼底镜到荧光素血管造影图像到图像转换的案例研究
Computer methods and programs in biomedicine update Pub Date : 2025-01-01 DOI: 10.1016/j.cmpbup.2025.100179
Veena K.M. , Veena Mayya , Rashmi Naveen Raj , Sulatha V. Bhandary , Uma Kulkarni
{"title":"Analysis of preprocessing for Generative Adversarial Networks: A case study on color fundoscopy to fluorescein angiography image-to-image translation","authors":"Veena K.M. ,&nbsp;Veena Mayya ,&nbsp;Rashmi Naveen Raj ,&nbsp;Sulatha V. Bhandary ,&nbsp;Uma Kulkarni","doi":"10.1016/j.cmpbup.2025.100179","DOIUrl":"10.1016/j.cmpbup.2025.100179","url":null,"abstract":"<div><div>Generative Adversarial Networks (GANs) are capturing the attention of peer researchers in paired or unpaired image-to-image translation applications, particularly in the domain of retinal image processing. Additionally, there are several effective image preprocessing techniques available that can significantly improve the performance of GANs. This study examines the impact of five different image preprocessing techniques - Green Channel, CLAHE on Green Channel, CLAHE on RGB channels, Green Channel Gaussian Convolution, and RGB Gaussian Convolution - on five different GAN variants: CycleGAN, Pix2Pix GAN, CUT GAN, FastCut GAN, and NICE GAN. The study involved conducting 30 experiments to assess the performances of these GAN variants in the image-to-image translation of dual-mode retinal images. The evaluation utilized Frechet Inception Distance (FID) and Kernel Inception Distance (KID) metric scores to measure the performance of the GAN variants. The results demonstrated that the CycleGAN model achieved the best performance with CLAHE on RGB preprocessed images, achieving the lowest FID and KID scores of 103.49 and 0.038, respectively. This investigation underscores the significant potential of image preprocessing techniques in enhancing the performance of GANs in image translation applications.</div></div>","PeriodicalId":72670,"journal":{"name":"Computer methods and programs in biomedicine update","volume":"7 ","pages":"Article 100179"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143180370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A predictive analytics approach with Bayesian-optimized gentle boosting ensemble models for diabetes diagnosis 预测分析方法与贝叶斯优化温和促进集成模型糖尿病诊断
Computer methods and programs in biomedicine update Pub Date : 2025-01-01 DOI: 10.1016/j.cmpbup.2025.100184
Behnaz Motamedi, Balázs Villányi
{"title":"A predictive analytics approach with Bayesian-optimized gentle boosting ensemble models for diabetes diagnosis","authors":"Behnaz Motamedi,&nbsp;Balázs Villányi","doi":"10.1016/j.cmpbup.2025.100184","DOIUrl":"10.1016/j.cmpbup.2025.100184","url":null,"abstract":"<div><div>Effective disease management necessitates the accurate and timely prediction of lung cancer and diabetes. Machine learning (ML) based models have garnered attention in the realm of predictive healthcare, with ensemble methods, in particular, bolstering algorithms to improve classification performance. Nevertheless, enhancing boosting algorithms to achieve superior predictive accuracy continues to be a difficult task. This study proposes a Bayesian-Optimized GentleBoost Ensemble (BOGBEnsemble) to improve classification performance for diabetes prediction (DiP) and lung cancer prediction (LCP). Two Kaggle datasets—a diabetes dataset from multiple healthcare providers and a Survey Lung Cancer dataset from existent medical records—are utilized. Data preprocessing involves outlier removal, min–max normalization, class balancing, and Pearson correlation-based feature selection. The GentleBoost classifier is optimized using Bayesian hyperparameter tuning, focusing on learning rate and the number of weak learners, and is validated using 10-fold cross-validation. BOGBEnsemble is evaluated in comparison to leading models, such as Random Forest (RF), Adaptive Boosting (AdaBoost), Logistic Boosting (LogitBoost), Random Undersampling Boosting (RUSBoost), conventional GentleBoost, and Multi-Layer Perceptron (MLP) architectures. The DiP-BOGBEnsemble achieves a 99.26% accuracy, 98.94% precision, 99.60% recall, 99.26% F1-score, 99.46% F2-score, 98.51% MCC, 98.51 Kappa, 0.0041 FOR, and 22,606.75 DOR. The LC-BOGBEnsemble achieves a 96.51% accuracy, 97.83% precision, 94.76% recall, 96.28% F1-score, 95.36% F2-score, MCC of 93.03%, Kappa of 92.99, FOR of 0.0462, and DOR of 932.15. This study highlights the potential of BOGBEnsemble as a clinically viable tool for early disease detection and decision support, paving the way for more reliable and personalized healthcare strategies.</div></div>","PeriodicalId":72670,"journal":{"name":"Computer methods and programs in biomedicine update","volume":"7 ","pages":"Article 100184"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143455086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Time series analysis and prediction of the trends of COVID-19 epidemic in Singapore based on machine learning 基于机器学习的新加坡新冠肺炎疫情趋势时间序列分析与预测
Computer methods and programs in biomedicine update Pub Date : 2025-01-01 DOI: 10.1016/j.cmpbup.2025.100190
Wenbin Yang , Xin Chang
{"title":"Time series analysis and prediction of the trends of COVID-19 epidemic in Singapore based on machine learning","authors":"Wenbin Yang ,&nbsp;Xin Chang","doi":"10.1016/j.cmpbup.2025.100190","DOIUrl":"10.1016/j.cmpbup.2025.100190","url":null,"abstract":"<div><div>The COVID-19 pandemic has posed a significant threat to global health, with ongoing rises in new cases and deaths in Singapore, profoundly affecting public health, social activities, and the economy. This study compares the performance of LSTM, GRU, and a composite prediction model (LSTM-GRU) using a dataset of new and cumulative COVID-19 cases in Singapore, provided by the World Health Organization. The analysis uses weekly cumulative data from 2020 to January 21, 2024, to forecast new cases for the upcoming weeks. Model performance is evaluated using RMSE, MAE, MAPE, and R2. The results show that the LSTM model outperforms others, particularly in capturing significant data fluctuations. This research provides insights into the trends of the pandemic in Singapore and offers a basis for further epidemiological control efforts in the region.</div></div>","PeriodicalId":72670,"journal":{"name":"Computer methods and programs in biomedicine update","volume":"7 ","pages":"Article 100190"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143783148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信