Unifying heterogeneous hyperspectral databases for in vivo human brain cancer classification: Towards robust algorithm development

Alberto Martín-Pérez , Beatriz Martinez-Vega , Manuel Villa , Raquel Leon , Alejandro Martinez de Ternero , Himar Fabelo , Samuel Ortega , Eduardo Quevedo , Gustavo M. Callico , Eduardo Juarez , César Sanz
{"title":"Unifying heterogeneous hyperspectral databases for in vivo human brain cancer classification: Towards robust algorithm development","authors":"Alberto Martín-Pérez ,&nbsp;Beatriz Martinez-Vega ,&nbsp;Manuel Villa ,&nbsp;Raquel Leon ,&nbsp;Alejandro Martinez de Ternero ,&nbsp;Himar Fabelo ,&nbsp;Samuel Ortega ,&nbsp;Eduardo Quevedo ,&nbsp;Gustavo M. Callico ,&nbsp;Eduardo Juarez ,&nbsp;César Sanz","doi":"10.1016/j.cmpbup.2025.100183","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and objective</h3><div>Cancer is one of the leading causes of death worldwide, and early and accurate detection is crucial to improve patient outcomes. Differentiating between healthy and diseased brain tissue during surgery is particularly challenging. Hyperspectral imaging, combined with machine and deep learning algorithms, has shown promise for detecting brain cancer <em>in vivo</em>. The present study is distinguished by an analysis and comparison of the performance of various algorithms, with the objective of evaluating their efficacy in unifying hyperspectral databases obtained from different cameras. These databases include data collected from various hospitals using different hyperspectral instruments, which vary in spectral ranges, spatial and spectral resolution, as well as illumination conditions. The primary aim is to assess the performance of models that respond to the limited availability of <em>in vivo</em> human brain hyperspectral data. The classification of healthy tissue, tumors and blood vessels is achieved through the utilisation of different algorithms in two databases: <em>HELICoiD</em> and <em>SLIMBRAIN</em>.</div></div><div><h3>Methods</h3><div>This study evaluated conventional and deep learning methods (<em>KNN, RF, SVM, 1D-DNN, 2D-CNN, Fast 3D-CNN,</em> and a <em>DRNN</em>), and advanced classification frameworks (<em>LIBRA</em> and <em>HELICoiD</em>) using cross-validation on 16 and 26 patients from each database, respectively.</div></div><div><h3>Results</h3><div>For individual datasets,<em>LIBRA</em> achieved the highest sensitivity for tumor classification, with values of 38 %, 72 %, and 80 % on the <em>SLIMBRAIN, HELICoiD</em> (20 bands), and <em>HELICoiD</em> (128 bands) datasets, respectively. The <em>HELICoiD</em> framework yielded the best <em>F1 Scores</em> for tumor tissue, with values of 11 %, 45 %, and 53 % for the same datasets. For the <em>Unified dataset, LIBRA</em> obtained the best results identifying the tumor, with a 40 % of sensitivity and a 30 % of <em>F1 Score</em>.</div></div>","PeriodicalId":72670,"journal":{"name":"Computer methods and programs in biomedicine update","volume":"7 ","pages":"Article 100183"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer methods and programs in biomedicine update","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666990025000072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background and objective

Cancer is one of the leading causes of death worldwide, and early and accurate detection is crucial to improve patient outcomes. Differentiating between healthy and diseased brain tissue during surgery is particularly challenging. Hyperspectral imaging, combined with machine and deep learning algorithms, has shown promise for detecting brain cancer in vivo. The present study is distinguished by an analysis and comparison of the performance of various algorithms, with the objective of evaluating their efficacy in unifying hyperspectral databases obtained from different cameras. These databases include data collected from various hospitals using different hyperspectral instruments, which vary in spectral ranges, spatial and spectral resolution, as well as illumination conditions. The primary aim is to assess the performance of models that respond to the limited availability of in vivo human brain hyperspectral data. The classification of healthy tissue, tumors and blood vessels is achieved through the utilisation of different algorithms in two databases: HELICoiD and SLIMBRAIN.

Methods

This study evaluated conventional and deep learning methods (KNN, RF, SVM, 1D-DNN, 2D-CNN, Fast 3D-CNN, and a DRNN), and advanced classification frameworks (LIBRA and HELICoiD) using cross-validation on 16 and 26 patients from each database, respectively.

Results

For individual datasets,LIBRA achieved the highest sensitivity for tumor classification, with values of 38 %, 72 %, and 80 % on the SLIMBRAIN, HELICoiD (20 bands), and HELICoiD (128 bands) datasets, respectively. The HELICoiD framework yielded the best F1 Scores for tumor tissue, with values of 11 %, 45 %, and 53 % for the same datasets. For the Unified dataset, LIBRA obtained the best results identifying the tumor, with a 40 % of sensitivity and a 30 % of F1 Score.

Abstract Image

统一异构高光谱数据库,进行活体人类脑癌分类:实现稳健的算法开发
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.90
自引率
0.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信