Unifying heterogeneous hyperspectral databases for in vivo human brain cancer classification: Towards robust algorithm development

Alberto Martín-Pérez , Beatriz Martinez-Vega , Manuel Villa , Raquel Leon , Alejandro Martinez de Ternero , Himar Fabelo , Samuel Ortega , Eduardo Quevedo , Gustavo M. Callico , Eduardo Juarez , César Sanz
{"title":"Unifying heterogeneous hyperspectral databases for in vivo human brain cancer classification: Towards robust algorithm development","authors":"Alberto Martín-Pérez ,&nbsp;Beatriz Martinez-Vega ,&nbsp;Manuel Villa ,&nbsp;Raquel Leon ,&nbsp;Alejandro Martinez de Ternero ,&nbsp;Himar Fabelo ,&nbsp;Samuel Ortega ,&nbsp;Eduardo Quevedo ,&nbsp;Gustavo M. Callico ,&nbsp;Eduardo Juarez ,&nbsp;César Sanz","doi":"10.1016/j.cmpbup.2025.100183","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and objective</h3><div>Cancer is one of the leading causes of death worldwide, and early and accurate detection is crucial to improve patient outcomes. Differentiating between healthy and diseased brain tissue during surgery is particularly challenging. Hyperspectral imaging, combined with machine and deep learning algorithms, has shown promise for detecting brain cancer <em>in vivo</em>. The present study is distinguished by an analysis and comparison of the performance of various algorithms, with the objective of evaluating their efficacy in unifying hyperspectral databases obtained from different cameras. These databases include data collected from various hospitals using different hyperspectral instruments, which vary in spectral ranges, spatial and spectral resolution, as well as illumination conditions. The primary aim is to assess the performance of models that respond to the limited availability of <em>in vivo</em> human brain hyperspectral data. The classification of healthy tissue, tumors and blood vessels is achieved through the utilisation of different algorithms in two databases: <em>HELICoiD</em> and <em>SLIMBRAIN</em>.</div></div><div><h3>Methods</h3><div>This study evaluated conventional and deep learning methods (<em>KNN, RF, SVM, 1D-DNN, 2D-CNN, Fast 3D-CNN,</em> and a <em>DRNN</em>), and advanced classification frameworks (<em>LIBRA</em> and <em>HELICoiD</em>) using cross-validation on 16 and 26 patients from each database, respectively.</div></div><div><h3>Results</h3><div>For individual datasets,<em>LIBRA</em> achieved the highest sensitivity for tumor classification, with values of 38 %, 72 %, and 80 % on the <em>SLIMBRAIN, HELICoiD</em> (20 bands), and <em>HELICoiD</em> (128 bands) datasets, respectively. The <em>HELICoiD</em> framework yielded the best <em>F1 Scores</em> for tumor tissue, with values of 11 %, 45 %, and 53 % for the same datasets. For the <em>Unified dataset, LIBRA</em> obtained the best results identifying the tumor, with a 40 % of sensitivity and a 30 % of <em>F1 Score</em>.</div></div>","PeriodicalId":72670,"journal":{"name":"Computer methods and programs in biomedicine update","volume":"7 ","pages":"Article 100183"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer methods and programs in biomedicine update","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666990025000072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background and objective

Cancer is one of the leading causes of death worldwide, and early and accurate detection is crucial to improve patient outcomes. Differentiating between healthy and diseased brain tissue during surgery is particularly challenging. Hyperspectral imaging, combined with machine and deep learning algorithms, has shown promise for detecting brain cancer in vivo. The present study is distinguished by an analysis and comparison of the performance of various algorithms, with the objective of evaluating their efficacy in unifying hyperspectral databases obtained from different cameras. These databases include data collected from various hospitals using different hyperspectral instruments, which vary in spectral ranges, spatial and spectral resolution, as well as illumination conditions. The primary aim is to assess the performance of models that respond to the limited availability of in vivo human brain hyperspectral data. The classification of healthy tissue, tumors and blood vessels is achieved through the utilisation of different algorithms in two databases: HELICoiD and SLIMBRAIN.

Methods

This study evaluated conventional and deep learning methods (KNN, RF, SVM, 1D-DNN, 2D-CNN, Fast 3D-CNN, and a DRNN), and advanced classification frameworks (LIBRA and HELICoiD) using cross-validation on 16 and 26 patients from each database, respectively.

Results

For individual datasets,LIBRA achieved the highest sensitivity for tumor classification, with values of 38 %, 72 %, and 80 % on the SLIMBRAIN, HELICoiD (20 bands), and HELICoiD (128 bands) datasets, respectively. The HELICoiD framework yielded the best F1 Scores for tumor tissue, with values of 11 %, 45 %, and 53 % for the same datasets. For the Unified dataset, LIBRA obtained the best results identifying the tumor, with a 40 % of sensitivity and a 30 % of F1 Score.

Abstract Image

统一异构高光谱数据库,进行活体人类脑癌分类:实现稳健的算法开发
背景和目的癌症是世界范围内导致死亡的主要原因之一,早期和准确的检测对于改善患者的预后至关重要。在手术中区分健康脑组织和病变脑组织尤其具有挑战性。高光谱成像,结合机器和深度学习算法,有望在体内检测脑癌。本研究的特点是分析和比较了各种算法的性能,目的是评估它们在统一来自不同相机的高光谱数据库方面的功效。这些数据库包括使用不同的高光谱仪器从各医院收集的数据,这些仪器在光谱范围、空间和光谱分辨率以及照明条件方面各不相同。主要目的是评估对有限的体内人脑高光谱数据做出反应的模型的性能。健康组织、肿瘤和血管的分类是通过在HELICoiD和SLIMBRAIN两个数据库中使用不同的算法来实现的。方法本研究通过交叉验证分别对来自每个数据库的16例和26例患者评估了传统和深度学习方法(KNN、RF、SVM、1D-DNN、2D-CNN、Fast 3D-CNN和一个DRNN)以及高级分类框架(LIBRA和HELICoiD)。结果对于单个数据集,LIBRA对肿瘤分类的敏感性最高,在SLIMBRAIN、HELICoiD(20个波段)和HELICoiD(128个波段)数据集上的敏感性分别为38%、72%和80%。HELICoiD框架在肿瘤组织中获得了最好的F1评分,在相同的数据集中分别为11%、45%和53%。对于统一数据集,LIBRA获得了识别肿瘤的最佳结果,灵敏度为40%,F1评分为30%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.90
自引率
0.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信