ADMET and DMPK最新文献

筛选
英文 中文
Dissolution-permeation of hot-melt extruded amorphous solid dispersion comprising an experimental grade of HPMCAS. 包括实验级HPMCAS的热熔挤出无定形固体分散体的溶解渗透。
IF 2.5
ADMET and DMPK Pub Date : 2023-07-22 eCollection Date: 2023-01-01 DOI: 10.5599/admet.1586
Hironori Tanaka, Tetsuya Miyano, Hiroshi Ueda
{"title":"Dissolution-permeation of hot-melt extruded amorphous solid dispersion comprising an experimental grade of HPMCAS.","authors":"Hironori Tanaka,&nbsp;Tetsuya Miyano,&nbsp;Hiroshi Ueda","doi":"10.5599/admet.1586","DOIUrl":"10.5599/admet.1586","url":null,"abstract":"<p><strong>Background and purpose: </strong>Physicochemical properties of an amorphous solid dispersion (ASD) comprising an experimental grade of hydroxypropyl methylcellulose acetate succinate (HPMCAS-MX) with lower glass transition temperature have been previously investigated. This study aimed to evaluate applicability of HPMCAS-MX to hot-melt extrusion (HME) and dissolution-permeation performance of prepared ASDs using MicroFLUX.</p><p><strong>Review approach: </strong>A physical mixture of indomethacin (IMC) and HPMCAS-MX or -MG (a commercial grade with higher transition temperature) at 20:80 weight ratio was hot-melt extruded to prepare an ASD (IMC-MX and IMC-MG, respectively). The dissolution-permeation performance and the stability of the ASDs were measured.</p><p><strong>Key results: </strong>A torque reduction at 120 °C implied that IMC-MX transformed into an amorphous state at this temperature, but IMC-MG required around 170 °C. This result was supported by Raman mapping of the the HME samples. IMC-MG and IMC-MX remained in an amorphous state at 40 °C for three months. The initial dissolution rate and solubility of the ASDs were higher than that of crystalline IMC. The apparent permeability of IMC from IMC-MX and IMC-MG was comparable but was approximately two-fold higher than that from crystalline IMC.</p><p><strong>Conclusion: </strong>HPMCAS-MX enabled HME process at a lower temperature and improved the dissolution-permeation performance of indomethacin.</p>","PeriodicalId":7259,"journal":{"name":"ADMET and DMPK","volume":"11 3","pages":"373-385"},"PeriodicalIF":2.5,"publicationDate":"2023-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10567069/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41187992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preparation of self-assembly silica redox nanoparticles to improve drug encapsulation and suppress the adverse effect of doxorubicin. 自组装二氧化硅氧化还原纳米粒子的制备改善药物包封并抑制阿霉素的不良反应
IF 2.5
ADMET and DMPK Pub Date : 2023-07-04 eCollection Date: 2023-01-01 DOI: 10.5599/admet.1845
Minh-Dat Quoc Tang, Nhu-Thuy Trinh, Dung Vu, Thu-Ha Thi Nguyen, Hung Thanh Dong, Toi Van Vo, Long Binh Vong
{"title":"Preparation of self-assembly silica redox nanoparticles to improve drug encapsulation and suppress the adverse effect of doxorubicin.","authors":"Minh-Dat Quoc Tang, Nhu-Thuy Trinh, Dung Vu, Thu-Ha Thi Nguyen, Hung Thanh Dong, Toi Van Vo, Long Binh Vong","doi":"10.5599/admet.1845","DOIUrl":"10.5599/admet.1845","url":null,"abstract":"<p><strong>Background and purpose: </strong>The utilization of doxorubicin (DOX) in clinal trials is also challenging owing to its adverse effects, including low oral bioavailability, generation of reactive oxygen species (ROS), cardiotoxicity, and epithelial barrier damage. Recently, scavenging of ROS reduced the cytotoxicity of DOX, suggesting a new approach for using DOX as an anticancer treatment. Thus, in this study, non-silica and silica redox nanoparticles (denoted as RNP<sup>N</sup> and siRNP, respectively) with ROS scavenging features have been designed to encapsulate DOX and reduce its cytotoxicity.</p><p><strong>Experimental approach: </strong>DOX-loaded RNP<sup>N</sup> (DOX@RNP<sup>N</sup>) and DOX-loaded siRNP (DOX@siRNP) were prepared by co-dissolving DOX with RNP<sup>N</sup> and siRNP, respectively. The size and stability of nanoparticles were characterized by the dynamic light scattering system. Additionally, encapsulation efficiency, loading capacity, and release profile of DOX@RNP<sup>N</sup> and DOX@siRNP were identified by measuring the absorbance of DOX. Finally, the cytotoxicity of DOX@RNP<sup>N</sup> and DOX@siRNP against normal murine fibroblast cells (L929), human hepatocellular carcinoma cells (HepG2), and human breast cancer cells (MCF-7) were also investigated.</p><p><strong>Key results: </strong>The obtained result showed that RNP<sup>N</sup> exhibited a pH-sensitive character while silanol moieties improved the stability of siRNP in physiological conditions. DOX@RNP<sup>N</sup> and DOX@siRNP were formed at several tens of nanometers in diameter with narrow distribution. Moreover, DOX@siRNP stabilized under different pH buffers, especially gastric pH, and improved encapsulation of DOX owing to the addition of silanol groups. DOX@RNP<sup>N</sup> and DOX@siRNP maintained anticancer activity of DOX against HepG2, and MCF-7 cells, while their cytotoxicity on L929 cells was significantly reduced compared to free DOX treatment.</p><p><strong>Conclusion: </strong>DOX@RNP<sup>N</sup> and DOX@siRNP could effectively suppress the adverse effect of DOX, suggesting the potential to become promising nanomedicines for cancer treatments.</p>","PeriodicalId":7259,"journal":{"name":"ADMET and DMPK","volume":"1 1","pages":"551-560"},"PeriodicalIF":2.5,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10626516/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41797602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Green synthesis, characterization and biological activities of silver nanoparticles synthesized from Neolamarkia cadamba 绿色合成、表征及纳米银的生物活性
IF 2.5
ADMET and DMPK Pub Date : 2023-07-01 DOI: 10.5599/admet.1793
Maheswari Juluri, Reshma Anjum Mohammed, S. Mohan, Narasimha Golla, S. Krishna, Kishori Battini
{"title":"Green synthesis, characterization and biological activities of silver nanoparticles synthesized from Neolamarkia cadamba","authors":"Maheswari Juluri, Reshma Anjum Mohammed, S. Mohan, Narasimha Golla, S. Krishna, Kishori Battini","doi":"10.5599/admet.1793","DOIUrl":"https://doi.org/10.5599/admet.1793","url":null,"abstract":"Background and purpose: Metal nanoparticles are essential due to their unique catalytic, electrical, magnetic, and optical characteristics, as well as their prospective use in sensing, catalysis, and biological research. In recent years, researchers have focused on developing cost-effective and eco-friendly biogenic practices using the green synthesis of metal nanoparticles (AgNP). Experimental approach: In the present study, the aqueous extracts prepared from the leaf, stem, bark, and flower of Neolamarkia cadamba were used for the synthesis of silver nanoparticles. Synthesized silver nanoparticles were characterized using UV-Visible spectroscopy, zeta potential, dynamic light scattering, scanning electron microscope (SEM), and EDAX. Key results: The current study showed absorption of synthesized AgNPs at 425, 423, 410, and 400 nm. Dynamic light scattering of AgNPs Showed size distribution of AgNPs synthesized from leaf, stem, and flower aqueous extracts ranges from 80-200 nm and AgNPs prepared from bark extract ranges from 100-700 nm. Zeta-potential of the biosynthesized AgNPs was found as a sharp peak at -23.1 mV for the leaf, -27.0 mV for the stem, -34.1 mV for the bark, and -20.2 mV for the flower. Silver nanoparticles and crude extracts of Neolamarkia cadamba showed effective antibacterial, antifungal, and antioxidant activities. Conclusion: Silver nanoparticles have substantial antibacterial activity against Gram-positive bacteria and also exhibit the utmost antifungal activity against Aspergillus niger. The study concludes that the green synthesis of silver nanoparticles from N. cadamba leaf, stem, bark, and flower extract is a reliable and eco-friendly technique.","PeriodicalId":7259,"journal":{"name":"ADMET and DMPK","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45439831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anomalous salting-out, self-association and pKa effects in the practically-insoluble bromothymol blue. 几乎不溶的溴百里酚蓝中的异常盐析、自缔合和pKa效应。
IF 2.5
ADMET and DMPK Pub Date : 2023-05-23 eCollection Date: 2023-01-01 DOI: 10.5599/admet.1822
Alex Avdeef
{"title":"Anomalous salting-out, self-association and p<i>K</i><sub>a</sub> effects in the practically-insoluble bromothymol blue.","authors":"Alex Avdeef","doi":"10.5599/admet.1822","DOIUrl":"10.5599/admet.1822","url":null,"abstract":"<p><strong>Background and purpose: </strong>The widely-used and practically insoluble diprotic acidic dye, bromothymol blue (BTB), is a neutral molecule in strongly acidic aqueous solutions. The Schill (1964) extensive solubility-pH measurement of bromothymol blue in 0.1 and 1.0 M NaCl solutions, with pH adjusted with HCl from 0.0 to 5.4, featured several unusual findings. The data suggest that the difference in solubility of the neutral-form molecule in 1M NaCl is more than 0.7 log unit lower than the solubility in pure water. This could be considered as uncharacteristically high for a salting-out effect. Also, the study reported two apparent values of p<i>K</i><sub>a1</sub>, 1.48 and 1.00, in 0.1 M and 1.0 M NaCl solutions, respectively. The only other measured value found for pK<sub>a1</sub> in the literature is -0.66 (Gupta and Cadwallader, 1968).</p><p><strong>Experimental approach: </strong>It was reasoned that the there can be only a single p<i>K</i><sub>a1</sub> for BTB. Also, it was hypothesized that salting-out alone might not account for such a large difference in solubility observed at the two levels of salt. A generalized mass action approach incorporating activity corrections for charged species using the Stokes-Robinson hydration equation and for neutral species using the Setschenow equation, was selected to analyze the Schill solubility-pH data to seek a rationalization of these unusual results.</p><p><strong>Key results: </strong>BTB reveals complex speciation chemistry in saturated aqueous solutions which had been poorly understood for many years. The appearance of two different values of pK<sub>a1</sub> at different levels of NaCl and the anomalously high value of the empirical salting-out constant could be rationalized to normal values by invoking the formation of a very stable neutral dimer (log <i>K</i><sub>2</sub> = 10.0 ± 0.1 M<sup>-1</sup>). A 'normal' salting-out constant, 0.25 M<sup>-1</sup> was then derived. It was also possible to estimate the 'self-interaction' constant. The data analysis in the present study critically depended on the p<i>K</i><sub>a1</sub> = -0.66 reported by Gupta and Cadwallader.</p><p><strong>Conclusion: </strong>A more reasonable salting-out constant and a consistent single value for p<i>K</i><sub>a1</sub> have been determined by considering a self-interacting (aggregation) model involving an uncharged form of the molecule, which is likely a zwitterion, as suggested by literature spectrophotometric studies.</p>","PeriodicalId":7259,"journal":{"name":"ADMET and DMPK","volume":"11 3","pages":"419-432"},"PeriodicalIF":2.5,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10567066/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41187989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Recent advances in electrochemical determination of anticancer drug 5-fluorouracil. 抗癌药物 5-氟尿嘧啶电化学测定的最新进展。
IF 3.4
ADMET and DMPK Pub Date : 2023-04-19 eCollection Date: 2023-01-01 DOI: 10.5599/admet.1711
Totka Dodevska, Dobrin Hadzhiev, Ivan Shterev
{"title":"Recent advances in electrochemical determination of anticancer drug 5-fluorouracil.","authors":"Totka Dodevska, Dobrin Hadzhiev, Ivan Shterev","doi":"10.5599/admet.1711","DOIUrl":"10.5599/admet.1711","url":null,"abstract":"<p><p>Reliable, rapid, highly selective and sensitive analytical methods for the determination of antineoplastic agent 5-fluorouracil (5-FU) in human body fluids (blood serum/plasma and urine) are required to improve the chemotherapy regimen to reduce its toxicity and improve efficacy. Nowadays, electrochemical techniques provide a powerful analytical tool for 5-FU detection systems. This comprehensive review covers the advances in the development of electrochemical sensors for the quantitative determination of 5-FU, mainly focused on original studies reported from 2015 to date. We have summarized recent trends in the electrochemical sensor systems applied for the analysis of 5-FU in pharmaceutical formulations and biological samples, and critically evaluated the key performance metrics of these sensors (limit of detection, linear range, stability and recovery). Challenges and future outlooks in this field have also been discussed.</p>","PeriodicalId":7259,"journal":{"name":"ADMET and DMPK","volume":"11 2","pages":"135-150"},"PeriodicalIF":3.4,"publicationDate":"2023-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10262222/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10029919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An electrochemical sensing platform based on a modified carbon paste electrode with graphene/Co3O4 nanocomposite for sensitive propranolol determination. 基于石墨烯/Co3O4 纳米复合材料改性碳浆电极的电化学传感平台,用于灵敏测定普萘洛尔。
IF 3.4
ADMET and DMPK Pub Date : 2023-03-15 eCollection Date: 2023-01-01 DOI: 10.5599/admet.1705
Parisa Karami-Kolmoti, Reza Zaimbashi
{"title":"An electrochemical sensing platform based on a modified carbon paste electrode with graphene/Co<sub>3</sub>O<sub>4</sub> nanocomposite for sensitive propranolol determination.","authors":"Parisa Karami-Kolmoti, Reza Zaimbashi","doi":"10.5599/admet.1705","DOIUrl":"10.5599/admet.1705","url":null,"abstract":"<p><p>A simple and sensitive method for the determination of propranolol using a modified carbon paste electrode with graphene/Co<sub>3</sub>O<sub>4</sub> nanocomposite was presented. The electrochemical measurements of propranolol are studied using differential pulse voltammetry, cyclic voltammetry and chronoamperometry. The graphene/Co<sub>3</sub>O<sub>4</sub> nanocomposite exhibits excellent catalytic activity towards the electrochemical oxidation of propranolol in phosphate buffer solution of pH 7.0. The graphene/Co<sub>3</sub>O<sub>4</sub> nanocomposite facilitates the determination of propranolol in the concentration range 1.0-300.0 μM and a detection limit and sensitivity of 0.3 μM. and 0.1275 μA/μM were achieved.</p>","PeriodicalId":7259,"journal":{"name":"ADMET and DMPK","volume":"11 2","pages":"227-236"},"PeriodicalIF":3.4,"publicationDate":"2023-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10262224/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10029922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Voltammetric determination of hydrochlorothiazide at a modified carbon paste electrode with polypyrrole nanotubes. 聚吡咯纳米管修饰碳糊电极伏安法测定氢氯噻嗪。
IF 2.5
ADMET and DMPK Pub Date : 2023-03-15 eCollection Date: 2023-01-01 DOI: 10.5599/admet.1706
Arefeh Mohammadnavaz, Fariba Garkani-Nejad
{"title":"Voltammetric determination of hydrochlorothiazide at a modified carbon paste electrode with polypyrrole nanotubes.","authors":"Arefeh Mohammadnavaz,&nbsp;Fariba Garkani-Nejad","doi":"10.5599/admet.1706","DOIUrl":"10.5599/admet.1706","url":null,"abstract":"<p><p>In this paper, the electrochemical behavior of hydrochlorothiazide (HCTZ) is described using carbon paste electrodes modified with polypyrrole nanotubes (PPy-NTs/CPEs) at pH value 7. Experiments revealed that the presence of HCTZ greatly impacts the electrochemical behavior of modified CPEs. The synthesized PPy-NTs were utilized as a sensing material for the electrochemical detection of HCTZ and were investigated by cyclic voltammetry (CV), differential pulse voltammetry (DPV) and chronoamperometry. The key experiment conditions, including supporting electrolyte and electrolyte pH, were studied and optimized. Under optimized conditions, the prepared sensor displayed the linear relationships for the concentrations of HCTZ from 5.0 to 400.0 μM (R<sup>2</sup> = 0.9984). The detection limit of the PPy-NTs/CPEs sensor was found to be 1.5 μM using the DPV method. The PPy-NTs is highly selective, stable and sensitive for the determination of HCT. Therefore, we believe the newly prepared PPy-NTs material can be useful for different electrochemical applications.</p>","PeriodicalId":7259,"journal":{"name":"ADMET and DMPK","volume":"11 2","pages":"293-302"},"PeriodicalIF":2.5,"publicationDate":"2023-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10262231/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10029920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
The optimization of electrochemical immunosensors to detect epithelial sodium channel as a biomarker of hypertension. 电化学免疫传感器检测上皮钠通道作为高血压生物标志物的优化。
IF 2.5
ADMET and DMPK Pub Date : 2023-02-17 eCollection Date: 2023-01-01 DOI: 10.5599/admet.1629
Tias F H Lestari, Riyanto Setiyono, Nina Tristina, Yulia Sofiatin, Yeni Wahyuni Hartati
{"title":"The optimization of electrochemical immunosensors to detect epithelial sodium channel as a biomarker of hypertension.","authors":"Tias F H Lestari,&nbsp;Riyanto Setiyono,&nbsp;Nina Tristina,&nbsp;Yulia Sofiatin,&nbsp;Yeni Wahyuni Hartati","doi":"10.5599/admet.1629","DOIUrl":"10.5599/admet.1629","url":null,"abstract":"<p><p>The epithelial sodium channel (ENaC) is a transmembrane protein that regulates the balance of sodium salt levels in the body through its expression in various tissues. The increase in sodium salt in the body is related to the expression of ENaC, thereby increasing blood pressure. Therefore, overexpression of the ENaC protein can be used as a biomarker for hypertension. The detection of ENaC protein using anti-ENaC in the biosensor system has been optimized with the Box-Behnken experimental design. The steps carried out in this research are screen-printed carbon electrode modification with gold nanoparticles, then anti-ENaC was immobilized using cysteamine and glutaraldehyde. Optimum conditions of the experiment, such as anti-ENaC concentration, glutaraldehyde incubation time, and anti-ENaC incubation time, were optimized using the Box-Behnken experimental design to determine the factors that influence the increase in immunosensor current response and the optimum conditions obtained were then applied to variations in ENaC protein concentrations. The optimum experimental conditions for anti-ENaC concentration were 2.5 μg/mL, the glutaraldehyde incubation time was 30 minutes, and the anti-ENaC incubation time was 90 minutes. The developed electrochemical immunosensor has a detection limit of 0.0372 ng/mL and a quantification limit of 0.124 ng/mL for the ENaC protein concentration range of 0.09375 to 1.0 ng/mL. Thus, the immunosensor generated from this study can be used to measure the concentration of normal urine samples and those of patients with hypertension.</p>","PeriodicalId":7259,"journal":{"name":"ADMET and DMPK","volume":"11 2","pages":"211-226"},"PeriodicalIF":2.5,"publicationDate":"2023-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10262218/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9656517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent advances in nanomaterials-based electrochemical sensors for tramadol analysis. 基于纳米材料的曲马多电化学传感器研究进展。
IF 2.5
ADMET and DMPK Pub Date : 2023-01-01 DOI: 10.5599/admet.1593
Farideh Mousazadeh, Yar-Mohammad Baghelani, Shamsi Rahimi
{"title":"Recent advances in nanomaterials-based electrochemical sensors for tramadol analysis.","authors":"Farideh Mousazadeh,&nbsp;Yar-Mohammad Baghelani,&nbsp;Shamsi Rahimi","doi":"10.5599/admet.1593","DOIUrl":"https://doi.org/10.5599/admet.1593","url":null,"abstract":"<p><p>Tramadol is a centrally-acting analgesic used for treating moderate to severe acute and chronic pain. Pain is an unpleasant sensation that occurs most commonly as a result of tissue injury. Tramadol possesses agonist actions at the μ-opioid receptor and effects reuptake at the noradrenergic and serotonergic systems. In the last years, several analytical procedures have been published in the literature for the determination of tramadol from pharmaceutical formulations and biological matrices. Electrochemical methods have attracted tremendous attention for the quantification of this drug owing to their demonstrated potential for quick response, real-time measurements, elevated selectivity and sensitivity. In this review, we highlighted the recent advances and applications of nanomaterials-based electrochemical sensors for the analysis and detection of tramadol, which is extremely important for the indication of effective diagnoses and for quality control analyses in order to protect human health. Also, the main challenges in developing nanomaterials-based electrochemical sensors for the determination of tramadol will be discussed. At last, this review offers prospects for the future research and development needed for modified electrode sensing technology for the detection of tramadol.</p>","PeriodicalId":7259,"journal":{"name":"ADMET and DMPK","volume":"11 2","pages":"117-134"},"PeriodicalIF":2.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10262227/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9656513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis and biological evaluation of coumarin-quinone hybrids as multifunctional bioactive agents. 香豆素-醌类多功能生物活性化合物的合成及生物学评价。
IF 2.5
ADMET and DMPK Pub Date : 2023-01-01 DOI: 10.5599/admet.1468
Anees Pangal, Khursheed Ahmed
{"title":"Synthesis and biological evaluation of coumarin-quinone hybrids as multifunctional bioactive agents.","authors":"Anees Pangal,&nbsp;Khursheed Ahmed","doi":"10.5599/admet.1468","DOIUrl":"https://doi.org/10.5599/admet.1468","url":null,"abstract":"<p><p>We report the synthesis, structural characterization and pharmaceutical activity of four coumarin-quinone hybrids. The compounds were significantly active against <i>Staphylococcus aureus</i>, <i>Pseudomonas aeoginosa</i> and <i>Candida albicans</i>. Promising antioxidant activity was observed when compared to ascorbic acid. Two compounds, DTBSB and DTBSN, also showed commendable <i>in vitro</i> antiproliferative activities against the cells of human cancer cell lines MCF-7, MDA-MB-231, COLO-205, HT-29 and A549 along with appreciable tumor selectivity with distinct selectivity index. Molecular docking studies using cyclooxygenase-2 (PDB ID: 6COX) revealed strong binding affinities for the COX-2 active site. Moreover, ADMET properties of the synthesized compounds were determined using the pKCSM and SwissADME online tools and all the compounds had accurate pharmacokinetic profiles. Hence, the new coumarin-quinone hybrids DTBSB and DTBSN can be considered for optimization and lead development.</p>","PeriodicalId":7259,"journal":{"name":"ADMET and DMPK","volume":"11 1","pages":"81-96"},"PeriodicalIF":2.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9909729/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9260631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信