Advances in Civil Engineering最新文献

筛选
英文 中文
Machine Learning Modeling Integrating Experimental Analysis for Predicting Compressive Strength of Concrete Containing Different Industrial Byproducts 结合实验分析的机器学习模型用于预测含有不同工业副产品的混凝土的抗压强度
IF 1.8 4区 工程技术
Advances in Civil Engineering Pub Date : 2024-03-01 DOI: 10.1155/2024/7844854
Lakshmana Rao Kalabarige, Jayaprakash Sridhar, Sivaramakrishnan Subbaram, Palaniappan Prasath, Ravindran Gobinath
{"title":"Machine Learning Modeling Integrating Experimental Analysis for Predicting Compressive Strength of Concrete Containing Different Industrial Byproducts","authors":"Lakshmana Rao Kalabarige, Jayaprakash Sridhar, Sivaramakrishnan Subbaram, Palaniappan Prasath, Ravindran Gobinath","doi":"10.1155/2024/7844854","DOIUrl":"https://doi.org/10.1155/2024/7844854","url":null,"abstract":"This study aimed to develop accurate models for estimating the compressive strength (CS) of concrete using a combination of experimental testing and different machine learning (ML) approaches: baseline regression models, boosting model, bagging model, tree-based ensemble models, and average voting regression (VR). The research utilized an extensive experimental dataset with 14 input variables, including cement, limestone powder, fly ash, granulated glass blast furnace slag, silica fume, rice husk ash, marble powder, brick powder, coarse aggregate, fine aggregate, recycled coarse aggregate, water, superplasticizer, and voids in mineral aggregate. To evaluate the performance of each ML model, five metrics were used: mean absolute error (MAE), mean squared error (MSE), root mean squared error (RMSE), coefficient of determination (<i>R</i><sup>2</sup>-score), and relative root mean squared error (RRMSE). The comparative analysis revealed that the VR model exhibited the highest effectiveness, displaying a strong correlation between actual and estimated outcomes. The boosting, bagging, and VR models achieved impressive <i>R</i><sup>2</sup>-scores in the range of 86.69%–92.43%, with MAE ranging from 3.87 to 4.87, MSE from 21.74 to 38.37, RMSE from 4.66 to 4.87, and RRMSE between 8% and 11%. Particularly, the VR model outperformed all other models with the highest <i>R</i><sup>2</sup>-score (92.43%) and the lowest error rate. The developed models demonstrated excellent generalization and prediction capabilities, providing valuable tools for practitioners, researchers, and designers to efficiently evaluate the CS of concrete. By mitigating environmental vulnerabilities and associated impacts, this research can significantly contribute to enhancing the quality and sustainability of concrete construction practices.","PeriodicalId":7242,"journal":{"name":"Advances in Civil Engineering","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140010241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of Plate Position on Uplift Failure State and Bearing Capacity of NT-CEP Pile Groups 板块位置对 NT-CEP 桩群上浮破坏状态和承载能力的影响
IF 1.8 4区 工程技术
Advances in Civil Engineering Pub Date : 2024-03-01 DOI: 10.1155/2024/4904489
Yongmei Qian, Xu Chen, Lin Sun, Xihui Wang, Yang Chen
{"title":"Influence of Plate Position on Uplift Failure State and Bearing Capacity of NT-CEP Pile Groups","authors":"Yongmei Qian, Xu Chen, Lin Sun, Xihui Wang, Yang Chen","doi":"10.1155/2024/4904489","DOIUrl":"https://doi.org/10.1155/2024/4904489","url":null,"abstract":"The previous research results of the research group demonstrated that the plate position is the main factor affecting the uplift bearing capacity of the new type of concrete expanded plate pile (NT-CEP pile) group and the failure state of the soil around the pile. In this study, the visual half-section pile small-scale model of undisturbed soil tension test and ANSYS Finite Element Software comparative analysis two-pile small-scale test model and two-, four-, six-, and nine-pile models, which included the corner, side, and middle piles, were developed. The effect of the plate position on the displacement, stress, and bearing mechanism of the NT-CEP pile group under vertical tension was determined, which further improved the design concept of the NT-CEP pile group and provided strong theoretical support for its widespread application.","PeriodicalId":7242,"journal":{"name":"Advances in Civil Engineering","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140010177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stability Evaluation of the Goaf Based on Combination Weighting and Cloud Model 基于组合加权和云模型的 Goaf 稳定性评估
IF 1.8 4区 工程技术
Advances in Civil Engineering Pub Date : 2024-02-29 DOI: 10.1155/2024/3884586
Linning Guo, Kepeng Hou, Huafen Sun, Yong Yang
{"title":"Stability Evaluation of the Goaf Based on Combination Weighting and Cloud Model","authors":"Linning Guo, Kepeng Hou, Huafen Sun, Yong Yang","doi":"10.1155/2024/3884586","DOIUrl":"https://doi.org/10.1155/2024/3884586","url":null,"abstract":"Goaf has become one of the most significant sources of hazard affecting the safety of metal and nonmetal mines. Evaluation of goaf stability is of paramount importance for mine safety production. First, 13 indices such as rock mass structure, geological structure, and goaf volume are selected based on engineering experience and literature review to assess the stability of goaf. These indices are classified according to the characteristics of each factor, and a stability evaluation system for underground mine goaf is constructed. Second, the analytic hierarchy process method based on group decision theory is utilized to calculate the subjective weight of each index. Additionally, the CRITIC method is used to calculate the objective weight of each index. Finally, game theory is used to combine the subjective and objective weights, thereby improving the accuracy of the index weight. The stability grade of the goaf is calculated using the normal cloud model. The FLAC3D numerical simulation is used to analyze the stability of the goaf and verify the accuracy of the model. The abovementioned model is utilized for assessing the stability of the goaf in the Duimenshan mine section. The results indicate that 90% of the goaf area is in a stable or relatively stable condition, while the remaining 10% is unstable. The evaluation outcomes were compared with FLAC3D numerical simulations, highlighting a scientific and reliable method with an accuracy rate of 90%.","PeriodicalId":7242,"journal":{"name":"Advances in Civil Engineering","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140010063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Research on Flexural Properties and Flexural Toughness Evaluation Method of Steel Fiber Reinforced Cementitious Composites under Polar Low Temperatures 极地低温条件下钢纤维增强水泥基复合材料的挠曲性能和挠曲韧性评价方法研究
IF 1.8 4区 工程技术
Advances in Civil Engineering Pub Date : 2024-02-29 DOI: 10.1155/2024/1137438
Farun Shui, Jun Su, Junjie Huang, Yang Li, Weimin Qian
{"title":"Research on Flexural Properties and Flexural Toughness Evaluation Method of Steel Fiber Reinforced Cementitious Composites under Polar Low Temperatures","authors":"Farun Shui, Jun Su, Junjie Huang, Yang Li, Weimin Qian","doi":"10.1155/2024/1137438","DOIUrl":"https://doi.org/10.1155/2024/1137438","url":null,"abstract":"In this research, five groups of steel fiber reinforced cementitious composite (SFRCC) with different fiber volume content (0%, 0.5%, 1.0% 1.5%, and 2.0%) were designed to perform four-point flexural tests on beam specimens to study the effects of polar temperature (20, 0, −25, −50, −75, and −100°C) and fiber volume content on the flexural properties. The flexural toughness index and load holding capacity index were calculated based on the load–displacement curve, and the enhancement and toughening mechanisms of SFRCC by low temperature and steel fibers were analyzed in conjunction with experimental observations. The results of the proposed flexural toughness evaluation method show that the flexural toughness of SFRCC can significantly improve than that of ambient temperature when the temperature is lower than 0°C. With the decrease in temperature, the flexural property of SFRCC increases first and then decreases, and the temperature point of this transition is around −50–−75°C. The flexural property enhancement effect of 1.0% fiber volume content SFRCC is more significant in low temperatures according to the flexural toughness index and load holding capacity index. The conclusion can provide a reference for the application of SFRCC in cryogenic engineering, as well as a simple and quantifier evaluation method for flexural toughness is proposed.","PeriodicalId":7242,"journal":{"name":"Advances in Civil Engineering","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140010183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Feasibility Study of Expanded Clay Aggregate Lightweight Concrete for Nonstructural Applications 用于非结构应用的膨胀粘土骨料轻质混凝土可行性研究
IF 1.8 4区 工程技术
Advances in Civil Engineering Pub Date : 2024-02-29 DOI: 10.1155/2024/8263261
Shayan Ali Khan, Fazal Hussain, Rao Arsalan Khushnood, Hassan Amjad, Farhan Ahmad
{"title":"Feasibility Study of Expanded Clay Aggregate Lightweight Concrete for Nonstructural Applications","authors":"Shayan Ali Khan, Fazal Hussain, Rao Arsalan Khushnood, Hassan Amjad, Farhan Ahmad","doi":"10.1155/2024/8263261","DOIUrl":"https://doi.org/10.1155/2024/8263261","url":null,"abstract":"In nonstructural infill panels, common materials like expanded polystyrene panels face fire susceptibility, autoclaved aerated concrete (AAC) incurs high production costs, and traditional bricks come with a significant carbon footprint and weight. So, there is a requirement for infill panels that are not just resilient and lightweight but sustainable as well. This study seeks to address these issues by introducing sustainable and lightweight expanded clay aggregate (ECA) in concrete. Firstly, eight ECA mix designs were prepared by integrating fly ash and kerosene with clay, and ECA with a bulk density of 0.59 g/cm³ and compressive strength of up to 1.73 MPa were prepared. The lightest ECA mix was then chosen to explore their use in lightweight aggregate concrete (LWAC) along with fly ash as a secondary cementitious material. The resulting LWAC had a minimum density of 1,050 kg/m³ and a compressive strength of 6.8 MPa, fulfilling the standard requirements of a minimum of 3.5 MPa for nonstructural concrete.","PeriodicalId":7242,"journal":{"name":"Advances in Civil Engineering","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140011121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis of Dynamic Evolution of Surrounding Rock Movement and Stress-Fracture in the Upward and Repeated Mining of Close-Distance Coal Seams 近距离煤层向上重复开采过程中围岩运动和应力-断裂动态演变分析
IF 1.8 4区 工程技术
Advances in Civil Engineering Pub Date : 2024-02-28 DOI: 10.1155/2024/5548837
Ningbo Peng, Chunlei Zhang, Ruimin Feng, Arifuggaman Arif, Xi Chen, Weidong Zhang, Shuai Zhang, Mingjie Feng
{"title":"Analysis of Dynamic Evolution of Surrounding Rock Movement and Stress-Fracture in the Upward and Repeated Mining of Close-Distance Coal Seams","authors":"Ningbo Peng, Chunlei Zhang, Ruimin Feng, Arifuggaman Arif, Xi Chen, Weidong Zhang, Shuai Zhang, Mingjie Feng","doi":"10.1155/2024/5548837","DOIUrl":"https://doi.org/10.1155/2024/5548837","url":null,"abstract":"The distribution of mining-induced stress and the resulting rock fractures are two crucial factors affecting mineral extraction in protective layer mining. This research establishes a correlation between the vertical fracture aperture and the second derivative of the rock layer’s subsidence curve equation. The article explores the span requirement for a simply supported beam to fracture. This condition is relevant to understanding the dynamic evolution of rock movement and stress fractures during repeated mining of close-distance coal seams. Our study investigates alterations in rock stress and fractures resulting from repeated upward mining of coal seams, using the nearby coal seam cluster in Jincheng Mine as a case study. The research findings indicate that during the mining of the upper coal seam, the roof experiences significant but brief periodic loading intervals, as well as severe and moderate periodic loading. As mining progresses to the lower coal seam, pressure relief of the upper coal seam gradually increases in both degree and range. In the upper coal seam, the vertical stress distribution follows a sequence of “V,” “U,” and “W” forms. The upper coal seam undergoes five stages of expansion deformation: compression, expansion, increased expansion, decreased expansion, and stable expansion.","PeriodicalId":7242,"journal":{"name":"Advances in Civil Engineering","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140010129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the Potential of Green Microalgae-Based Phycoremediation Treated Wastewater for Sustainable Concrete Production 探索基于绿色微藻的植物修复处理废水在可持续混凝土生产中的潜力
IF 1.8 4区 工程技术
Advances in Civil Engineering Pub Date : 2024-02-28 DOI: 10.1155/2024/8564202
T. Q. K. Lam, K. S. Sreekeshava, C. Bhargavi, C. R. Ganesh, N. S. Ambale, T. M. D. Do
{"title":"Exploring the Potential of Green Microalgae-Based Phycoremediation Treated Wastewater for Sustainable Concrete Production","authors":"T. Q. K. Lam, K. S. Sreekeshava, C. Bhargavi, C. R. Ganesh, N. S. Ambale, T. M. D. Do","doi":"10.1155/2024/8564202","DOIUrl":"https://doi.org/10.1155/2024/8564202","url":null,"abstract":"Wastewater pollution from domestic, industrial, and agricultural sources threatens the environment and human health. Traditional wastewater treatment methods are energy intensive, generate significant sludge, and may not remove all contaminants. This study explores the use of microalgae, <i>Chlorella sorokinianana</i>, to treat wastewater and evaluates its impact on concrete properties. The research aims to optimize microalgae growth conditions, set up nutrient-rich growth chambers, develop biomass separation methods, and assess the effects of microalgae-treated wastewater on concrete. Scanning electron microscopy (SEM) was used to analyze concrete structures produced with microalgae-treated wastewater, freshwater, and sewage treatment plant (STP) water. Concrete from microalgae-treated wastewater exhibited euhedral crystals with pronounced gaps, while freshwater concrete had denser subhedral to anhedral crystals. STP water concrete consistently had lower strength values, possibly due to impurities affecting cement hydration. Microalgae-treated water concrete showed intermediate strength levels, suggesting organic or biological factors may influence hydration, but it still gained strength with time. This study underscores the potential of microalgae-treated wastewater for sustainable concrete production, highlighting the importance of further research to optimize conditions and promote environmentally friendly construction practices.","PeriodicalId":7242,"journal":{"name":"Advances in Civil Engineering","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140009938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Wooden Pin Reinforcement of Ancient Chinese Wooden Temple: A Case of Daxiong Hall 中国古代木结构寺庙的木销加固:大雄宝殿案例
IF 1.8 4区 工程技术
Advances in Civil Engineering Pub Date : 2024-02-28 DOI: 10.1155/2024/8824310
Hua Zhang, Wuping Gao, Yanling Wang
{"title":"A Wooden Pin Reinforcement of Ancient Chinese Wooden Temple: A Case of Daxiong Hall","authors":"Hua Zhang, Wuping Gao, Yanling Wang","doi":"10.1155/2024/8824310","DOIUrl":"https://doi.org/10.1155/2024/8824310","url":null,"abstract":"Post and lintel frame is a prominent architectural structure in Chinese temple architecture, characterized by its wooden construction. Mortise–tenon joints (MTJs) serve as the primary connection method for these wooden structures, employing straight mortise nodes (SMNs) and through-mortise joints (TMNs). This study presents a method that utilizes wooden pins to reinforce MTJs, enhancing the seismic performance of timber frame structures. Finite element (FE) simulation verifies the effectiveness of wooden pins in reinforcing both SMNs and TMNs, leading to improved load-bearing capacity and ductility of the MTJs. Additionally, the study confirms that reinforced nodes help to restrict the displacement changes within the wooden frame. The paper also investigates the optimal distribution of MTJs reinforced by the wooden pins throughout the structure, with the aim of enhancing the wood frame’s seismic performance. The results show the bearing capacity of MJT reinforced with wooden pins is approximately 11.3% higher compared to that of MTJ without reinforcement. The reinforcement of wood pins effectively controls the horizontal displacement of the overall structure of the wooden frame, which is reduced by about 50%–62% compared with the unreinforced wooden frame. The locating the wooden pin-reinforced MTJs in the outer columns and middle layer columns reduces the structural displacement, which is 31.53% in <i>X</i> direction, 5% in <i>Y</i> direction, and 25.86% in <i>Z</i> direction.","PeriodicalId":7242,"journal":{"name":"Advances in Civil Engineering","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140010131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analyzing the Mechanical, Durability, and Microstructural Impact of Partial Cement Replacement with Pumice Powder and Bamboo Leaf Ash in Concrete 分析在混凝土中用浮石粉和竹叶灰部分取代水泥对力学、耐久性和微观结构的影响
IF 1.8 4区 工程技术
Advances in Civil Engineering Pub Date : 2024-02-27 DOI: 10.1155/2024/5119850
Haris Hassen Adem, Fikreyesus Demeke Cherkos
{"title":"Analyzing the Mechanical, Durability, and Microstructural Impact of Partial Cement Replacement with Pumice Powder and Bamboo Leaf Ash in Concrete","authors":"Haris Hassen Adem, Fikreyesus Demeke Cherkos","doi":"10.1155/2024/5119850","DOIUrl":"https://doi.org/10.1155/2024/5119850","url":null,"abstract":"This study explores the physiomechanical and durability properties of C-25 concrete by partially replacing cement with blends of pumice powder (PP) and bamboo leaf ash (BLA). The combined amount of major oxides SiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>, and Fe<sub>2</sub>O<sub>3</sub> in PP is 84.59%, while in BLA, it is 74.4%, classifying PP and BLA as class N and F pozzolans. Subsequently, the study examines the impact of different cement replacement percentages, emphasizing 5%, 10%, 15%, and 20% on C-25 with varying mixes of concrete: Mix-1 (100, 0, and 0), Mix-2 (90, 5, and 5), Mix-3 (85, 10, and 5), Mix-4 (85, 5, and 10), and Mix-5 (80, 10, and 10) which correspond to the proportions of OPC, VPP, and BLA used in each mix respectively and by using 1 : 2.34 : 2.68 (cement : sand : aggregate) with the water/cement ratio (w/c) of 0.491. The study’s findings indicate that as the proportion of PP and BLA increases in concrete, the workability of the mixture decreases. Moreover, on the 28th day, Mix-2 with (35.84 MPa) and Mix-3 with (33.55 MPa) met the desired mean compressive strength (33.5 MPa) required for C-25 concrete per the ACI standards. Additionally, the flexural strength of concrete produced with partial replacement of Mix-2 with a flexural strength of 3.86 MPa fulfills the minimum strength requirement of 3.5 MPa specified by the C-25 ACI standards. The PP and BLA blended concrete had lower water absorption than the control mix in Mix-2. It also improved resistance to sulfuric acid attack, and Mix-3 had the least strength reduction of 9.59%. In contrast, the control mix has a 33.34% strength reduction.","PeriodicalId":7242,"journal":{"name":"Advances in Civil Engineering","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139978723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Research on 3D Measurement and Rapid Location Technique for Assembling the Special-Shaped Structural Segments 装配异型结构部件的三维测量和快速定位技术研究
IF 1.8 4区 工程技术
Advances in Civil Engineering Pub Date : 2024-02-26 DOI: 10.1155/2024/5119809
Shilei Wang, Zhangming Wang, Qiankuan Feng
{"title":"Research on 3D Measurement and Rapid Location Technique for Assembling the Special-Shaped Structural Segments","authors":"Shilei Wang, Zhangming Wang, Qiankuan Feng","doi":"10.1155/2024/5119809","DOIUrl":"https://doi.org/10.1155/2024/5119809","url":null,"abstract":"The pylon of the Xinshougang Bridge, a welded steel box arch with a variable cross-section, exhibits asymmetrical design and unevenly inclined limb ends. The segmented assembly of this uniquely shaped steel pylon necessitates precise splicing. In this paper, a novel three-point method for segment attitude positioning is proposed based on the local coordinate system. This method facilitates accurate coordinate translation and attitude alignment between the section preparation facility and the construction site. Furthermore, a predictive methodology for segment posture during erection is introduced, aiming to minimize misalignments at the connection interfaces. This approach accounts for potential deviations arising in manufacturing and erection phases. The synergistic application of these methods effectively ensures the precise geometric shape of the bending and twisting steel tower throughout its phased construction.","PeriodicalId":7242,"journal":{"name":"Advances in Civil Engineering","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139968965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信