{"title":"开挖扰动对含有多泥质夹层的垫层大理岩岩体高边坡稳定性的影响","authors":"Fei Liu, Jiaming Zhang, Pengzheng Guo, Wenlian Liu, Zhiqiang Wang, Jipu Chen","doi":"10.1155/2024/3659021","DOIUrl":null,"url":null,"abstract":"In China, slope engineering occasionally faces landslides in rocky slopes containing muddy interlayers, primarily triggered by excavation activities. These incidents lead to considerable human casualties and substantial economic losses. However, existing studies predominantly concentrate on the excavation-induced impacts on the stability of rocky slopes characterized by single-layered soft and weak interlayers. Conversely, reports on how excavation influences the stability of bedding cataclastic rock mass high slope containing multimuddy interlayers remain notably absent in the literature. Moreover, unloading due to excavation can swiftly compromise the mechanical integrity and overall quality of the rock mass, consequently impacting the stability of slopes postexcavation. Therefore, this paper modeled the unstable slope excavated at a waste incineration power plant in Yuxi, Yunnan, using the finite element strength reduction method. This approach was employed to comprehensively simulate the entire process of artificial multilevel excavation in a bedding cataclastic rock mass high slope containing multimuddy interlayers. This study investigated the impact of multilevel artificial excavation on slope stability by thoroughly considering factors including alterations in slope morphology, unloading effects, and the degradation of geotechnical parameters. The research yielded the subsequent conclusions. Multimuddy interlayers were the key to the slope’s instability. For slopes subjected to such multilevel excavation, efforts were made to minimize the exposure of muddy interlayers. Slopes above exposed muddy interlayers did not require additional support, while those below needed prioritized reinforcement. The likely instability mode of the actual slope was local destabilization leading to landslides. Furthermore, when using numerical simulation methods to study the impact of excavation disturbances on the stability of such slopes, it was necessary to consider the deterioration of geotechnical parameters to obtain results more reflective of actual conditions. These research findings provided valuable theoretical and empirical support for studies on similar excavated slopes.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Effect of Excavation Disturbance on the Stability of Bedding Cataclastic Rock Mass High Slope Containing Multimuddy Interlayers\",\"authors\":\"Fei Liu, Jiaming Zhang, Pengzheng Guo, Wenlian Liu, Zhiqiang Wang, Jipu Chen\",\"doi\":\"10.1155/2024/3659021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In China, slope engineering occasionally faces landslides in rocky slopes containing muddy interlayers, primarily triggered by excavation activities. These incidents lead to considerable human casualties and substantial economic losses. However, existing studies predominantly concentrate on the excavation-induced impacts on the stability of rocky slopes characterized by single-layered soft and weak interlayers. Conversely, reports on how excavation influences the stability of bedding cataclastic rock mass high slope containing multimuddy interlayers remain notably absent in the literature. Moreover, unloading due to excavation can swiftly compromise the mechanical integrity and overall quality of the rock mass, consequently impacting the stability of slopes postexcavation. Therefore, this paper modeled the unstable slope excavated at a waste incineration power plant in Yuxi, Yunnan, using the finite element strength reduction method. This approach was employed to comprehensively simulate the entire process of artificial multilevel excavation in a bedding cataclastic rock mass high slope containing multimuddy interlayers. This study investigated the impact of multilevel artificial excavation on slope stability by thoroughly considering factors including alterations in slope morphology, unloading effects, and the degradation of geotechnical parameters. The research yielded the subsequent conclusions. Multimuddy interlayers were the key to the slope’s instability. For slopes subjected to such multilevel excavation, efforts were made to minimize the exposure of muddy interlayers. Slopes above exposed muddy interlayers did not require additional support, while those below needed prioritized reinforcement. The likely instability mode of the actual slope was local destabilization leading to landslides. Furthermore, when using numerical simulation methods to study the impact of excavation disturbances on the stability of such slopes, it was necessary to consider the deterioration of geotechnical parameters to obtain results more reflective of actual conditions. These research findings provided valuable theoretical and empirical support for studies on similar excavated slopes.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/3659021\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2024/3659021","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
The Effect of Excavation Disturbance on the Stability of Bedding Cataclastic Rock Mass High Slope Containing Multimuddy Interlayers
In China, slope engineering occasionally faces landslides in rocky slopes containing muddy interlayers, primarily triggered by excavation activities. These incidents lead to considerable human casualties and substantial economic losses. However, existing studies predominantly concentrate on the excavation-induced impacts on the stability of rocky slopes characterized by single-layered soft and weak interlayers. Conversely, reports on how excavation influences the stability of bedding cataclastic rock mass high slope containing multimuddy interlayers remain notably absent in the literature. Moreover, unloading due to excavation can swiftly compromise the mechanical integrity and overall quality of the rock mass, consequently impacting the stability of slopes postexcavation. Therefore, this paper modeled the unstable slope excavated at a waste incineration power plant in Yuxi, Yunnan, using the finite element strength reduction method. This approach was employed to comprehensively simulate the entire process of artificial multilevel excavation in a bedding cataclastic rock mass high slope containing multimuddy interlayers. This study investigated the impact of multilevel artificial excavation on slope stability by thoroughly considering factors including alterations in slope morphology, unloading effects, and the degradation of geotechnical parameters. The research yielded the subsequent conclusions. Multimuddy interlayers were the key to the slope’s instability. For slopes subjected to such multilevel excavation, efforts were made to minimize the exposure of muddy interlayers. Slopes above exposed muddy interlayers did not require additional support, while those below needed prioritized reinforcement. The likely instability mode of the actual slope was local destabilization leading to landslides. Furthermore, when using numerical simulation methods to study the impact of excavation disturbances on the stability of such slopes, it was necessary to consider the deterioration of geotechnical parameters to obtain results more reflective of actual conditions. These research findings provided valuable theoretical and empirical support for studies on similar excavated slopes.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.