Yafei Wang, Zhanrong Zhang, Xingpei Kang, Hao Xie, Chenchen Wang, Kun Liu
{"title":"基于随机异质结构的土石混合斜坡稳定性分析","authors":"Yafei Wang, Zhanrong Zhang, Xingpei Kang, Hao Xie, Chenchen Wang, Kun Liu","doi":"10.1155/2024/1448371","DOIUrl":null,"url":null,"abstract":"Due to the complexity in the heterogeneous internal structure and interactions between rocks and soil, the slide of soil–rock mixed slope is usually more complex than that of a homogeneous soil slope. This paper investigated the stability of soil–rock mixed slopes with finite element method (FEM) based on random heterogeneous structure. An image-aided approach was used to generate the 2-D and 3-D digital rocks to ensure the morphology of digital rocks was similar with the real rocks. The 2-D and 3-D soil–rock mixed slopes were then generated by placing the digital rocks into the soil matrix. The generated heterogeneous structures of soil–rock mixed slope were imported into ABAQUS for numerical analysis. The effect of rock content, spatial distributions, material properties, and rock–soil interface on the stability of soil–rock mixed slopes were analyzed. Results show that the stability factor of the soil–rock mixed slope increases with the increase of rock content. The rocks can play a certain degree of antislide effect in the slope. The uneven spatial distribution of rocks has effect on the overall stability of soil–rock mixed slope. This effect is more significant when the rock content is moderate. Rocks distributed in the middle layer of the slope may improve the overall antisliding performance of the slope. The stability factor decreases with the increase of rock density. While the effect of rock elastic modulus on stability of soil–rock mixed slope is relatively limited. The contact condition at the soil–rock interface has effect on the overall stability of soil–rock mixed slope. It is recommended to properly determine the interface properties for stability analysis of soil–rock mixed slope.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability Analysis of Soil and Rock Mixed Slope Based on Random Heterogeneous Structure\",\"authors\":\"Yafei Wang, Zhanrong Zhang, Xingpei Kang, Hao Xie, Chenchen Wang, Kun Liu\",\"doi\":\"10.1155/2024/1448371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the complexity in the heterogeneous internal structure and interactions between rocks and soil, the slide of soil–rock mixed slope is usually more complex than that of a homogeneous soil slope. This paper investigated the stability of soil–rock mixed slopes with finite element method (FEM) based on random heterogeneous structure. An image-aided approach was used to generate the 2-D and 3-D digital rocks to ensure the morphology of digital rocks was similar with the real rocks. The 2-D and 3-D soil–rock mixed slopes were then generated by placing the digital rocks into the soil matrix. The generated heterogeneous structures of soil–rock mixed slope were imported into ABAQUS for numerical analysis. The effect of rock content, spatial distributions, material properties, and rock–soil interface on the stability of soil–rock mixed slopes were analyzed. Results show that the stability factor of the soil–rock mixed slope increases with the increase of rock content. The rocks can play a certain degree of antislide effect in the slope. The uneven spatial distribution of rocks has effect on the overall stability of soil–rock mixed slope. This effect is more significant when the rock content is moderate. Rocks distributed in the middle layer of the slope may improve the overall antisliding performance of the slope. The stability factor decreases with the increase of rock density. While the effect of rock elastic modulus on stability of soil–rock mixed slope is relatively limited. The contact condition at the soil–rock interface has effect on the overall stability of soil–rock mixed slope. It is recommended to properly determine the interface properties for stability analysis of soil–rock mixed slope.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/1448371\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2024/1448371","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Stability Analysis of Soil and Rock Mixed Slope Based on Random Heterogeneous Structure
Due to the complexity in the heterogeneous internal structure and interactions between rocks and soil, the slide of soil–rock mixed slope is usually more complex than that of a homogeneous soil slope. This paper investigated the stability of soil–rock mixed slopes with finite element method (FEM) based on random heterogeneous structure. An image-aided approach was used to generate the 2-D and 3-D digital rocks to ensure the morphology of digital rocks was similar with the real rocks. The 2-D and 3-D soil–rock mixed slopes were then generated by placing the digital rocks into the soil matrix. The generated heterogeneous structures of soil–rock mixed slope were imported into ABAQUS for numerical analysis. The effect of rock content, spatial distributions, material properties, and rock–soil interface on the stability of soil–rock mixed slopes were analyzed. Results show that the stability factor of the soil–rock mixed slope increases with the increase of rock content. The rocks can play a certain degree of antislide effect in the slope. The uneven spatial distribution of rocks has effect on the overall stability of soil–rock mixed slope. This effect is more significant when the rock content is moderate. Rocks distributed in the middle layer of the slope may improve the overall antisliding performance of the slope. The stability factor decreases with the increase of rock density. While the effect of rock elastic modulus on stability of soil–rock mixed slope is relatively limited. The contact condition at the soil–rock interface has effect on the overall stability of soil–rock mixed slope. It is recommended to properly determine the interface properties for stability analysis of soil–rock mixed slope.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.