BMC biomedical engineering最新文献

筛选
英文 中文
A novel wearable device for automated real-time detection of epileptic seizures. 一种用于癫痫发作自动实时检测的新型可穿戴设备。
BMC biomedical engineering Pub Date : 2023-07-17 DOI: 10.1186/s42490-023-00073-7
Mikael Habtamu, Keneni Tolosa, Kidus Abera, Lamesgin Demissie, Samrawit Samuel, Yeabsera Temesgen, Elbetel Taye Zewde, Ahmed Ali Dawud
{"title":"A novel wearable device for automated real-time detection of epileptic seizures.","authors":"Mikael Habtamu,&nbsp;Keneni Tolosa,&nbsp;Kidus Abera,&nbsp;Lamesgin Demissie,&nbsp;Samrawit Samuel,&nbsp;Yeabsera Temesgen,&nbsp;Elbetel Taye Zewde,&nbsp;Ahmed Ali Dawud","doi":"10.1186/s42490-023-00073-7","DOIUrl":"https://doi.org/10.1186/s42490-023-00073-7","url":null,"abstract":"<p><strong>Background: </strong>Epilepsy is a neurological disorder that has a variety of origins. It is caused by hyperexcitability and an imbalance between excitation and inhibition, which results in seizures. The World Health Organization (WHO) and its partners have classified epilepsy as a major public health concern. Over 50 million individuals globally are affected by epilepsy which shows that the patient's family, social, educational, and vocational activities are severely limited if seizures are not controlled. Patients who suffer from epileptic seizures have emotional, behavioral, and neurological issues. Alerting systems using a wearable sensor are commonly used to detect epileptic seizures. However, most of the devices have no multimodal systems that increase sensitivity and lower the false discovery rate for screening and intervention of epileptic seizures. Therefore, the objective of this project was, to design and develop an efficient, economical, and automatically detecting epileptic seizure device in real-time.</p><p><strong>Methods: </strong>Our design incorporates different sensors to assess the patient's condition such as an accelerometer, pulsoxymeter and vibration sensor which process body movement, heart rate variability, oxygen denaturation, and jerky movement respectively. The algorithm for real-time detection of epileptic seizures is based on the following: acceleration increases to a higher value of 23.4 m/s<sup>2</sup> or decreases to a lower value of 10 m/s<sup>2</sup> as energy is absorbed by the body, the heart rate increases by 10 bpm from the normal heart rate, oxygen denaturation is below 90% and vibration should be out of the range of 3 Hz -17 Hz. Then, a pulsoxymeter device was used as a gold standard to compare the heart rate variability and oxygen saturation sensor readings. The accuracy of the accelerometer and vibration sensor was also tested by a fast-moving and vibrating normal person's hand.</p><p><strong>Results: </strong>The prototype was built and subjected to different tests and iterations. The proposed device was tested for accuracy, cost-effectiveness and ease of use. An acceptable accuracy was achieved for the accelerometer, pulsoxymeter, and vibration sensor measurements, and the prototype was built only with a component cost of less than 40 USD excluding design, manufacturing, and other costs. The design is tested to see if it fits the design criteria; the results of the tests reveal that a large portion of the scientific procedures utilized in this study to identify epileptic seizures is effective.</p><p><strong>Conclusion: </strong>This project is objectively targeted to design a medical device with multimodal systems that enable us to accurately detect epileptic seizures by detecting symptoms commonly associated with an episode of epileptic seizure and notifying a caregiver for immediate assistance. The proposed device has a great impact on reducing epileptic seizer mortality, especially in lo","PeriodicalId":72425,"journal":{"name":"BMC biomedical engineering","volume":"5 1","pages":"7"},"PeriodicalIF":0.0,"publicationDate":"2023-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10353099/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9839295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assistive technology: opportunities for societal inclusion of persons with disabilities and independence of the elderly. 辅助技术:残疾人融入社会和老年人独立的机会。
BMC biomedical engineering Pub Date : 2023-07-03 DOI: 10.1186/s42490-023-00072-8
Aliaa Rehan Youssef, Ahmed Morsy
{"title":"Assistive technology: opportunities for societal inclusion of persons with disabilities and independence of the elderly.","authors":"Aliaa Rehan Youssef,&nbsp;Ahmed Morsy","doi":"10.1186/s42490-023-00072-8","DOIUrl":"https://doi.org/10.1186/s42490-023-00072-8","url":null,"abstract":"<p><p>Assistive technology (AT) development worldwide aims to enhance the quality of life for persons with disabilities and elderly, yet its development and commercialization may face challenges. This collection aims at obtaining a better understanding of the hurdles that various stakeholders may face in the successful development and commercialization of AT.</p>","PeriodicalId":72425,"journal":{"name":"BMC biomedical engineering","volume":"5 1","pages":"6"},"PeriodicalIF":0.0,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10316604/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10127429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of cartilaginous rings in tracheal flow with stenosis. 软骨环对气管狭窄气流的影响
BMC biomedical engineering Pub Date : 2023-06-01 DOI: 10.1186/s42490-023-00068-4
Humberto Bocanegra Evans, Jose Montoya Segnini, Ali Doosttalab, Joehassin Cordero, Luciano Castillo
{"title":"Effect of cartilaginous rings in tracheal flow with stenosis.","authors":"Humberto Bocanegra Evans, Jose Montoya Segnini, Ali Doosttalab, Joehassin Cordero, Luciano Castillo","doi":"10.1186/s42490-023-00068-4","DOIUrl":"10.1186/s42490-023-00068-4","url":null,"abstract":"<p><strong>Background: </strong>In respiratory fluid dynamics research, it is typically assumed that the wall of the trachea is smooth. However, the trachea is structurally supported by a series of cartilaginous rings that create undulations on the wall surface, which introduce perturbations into the flow. Even though many studies use realistic Computer Tomography (CT) scan data to capture the complex geometry of the respiratory system, its limited spatial resolution does not resolve small features, including those introduced by the cartilaginous rings.</p><p><strong>Results: </strong>Here we present an experimental comparison of two simplified trachea models with Grade II stenosis (70% blockage), one with smooth walls and second with cartilaginous rings. The use a unique refractive index-matching method provides unprecedented optical access and allowed us to perform non-intrusive velocity field measurements close to the wall (e.g., Particle Image Velocimetry (PIV)). Measurements were performed in a flow regime comparable to a resting breathing state (Reynolds number Re<sub>D</sub> = 3350). The cartilaginous rings induce velocity fluctuations in the downstream flow, enhancing the near-wall transport of momentum flux and thus reducing flow separation in the downstream flow. The maximum upstream velocity in the recirculation region is reduced by 38%, resulting in a much weaker recirculation zone- a direct consequence of the cartilaginous rings.</p><p><strong>Conclusions: </strong>These results highlight the importance of the cartilaginous rings in respiratory flow studies and the mechanism to reduce flow separation in trachea stenosis.</p>","PeriodicalId":72425,"journal":{"name":"BMC biomedical engineering","volume":"5 1","pages":"5"},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10234078/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9618293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimization design of interdigitated microelectrodes with an insulation layer on the connection tracks to enhance efficiency of assessment of the cell viability. 在连接轨道上加绝缘层的交错微电极优化设计,提高细胞活力评估效率。
BMC biomedical engineering Pub Date : 2023-05-01 DOI: 10.1186/s42490-023-00070-w
Sameh Sherif, Yehya H Ghallab, Omnia AbdelRaheem, Laila Ziko, Rania Siam, Yehea Ismail
{"title":"Optimization design of interdigitated microelectrodes with an insulation layer on the connection tracks to enhance efficiency of assessment of the cell viability.","authors":"Sameh Sherif,&nbsp;Yehya H Ghallab,&nbsp;Omnia AbdelRaheem,&nbsp;Laila Ziko,&nbsp;Rania Siam,&nbsp;Yehea Ismail","doi":"10.1186/s42490-023-00070-w","DOIUrl":"https://doi.org/10.1186/s42490-023-00070-w","url":null,"abstract":"<p><strong>Background: </strong>Microelectrical Impedance Spectroscopy (µEIS) is a tiny device that utilizes fluid as a working medium in combination with biological cells to extract various electrical parameters. Dielectric parameters of biological cells are essential parameters that can be extracted using µEIS. µEIS has many advantages, such as portability, disposable sensors, and high-precision results.</p><p><strong>Results: </strong>The paper compares different configurations of interdigitated microelectrodes with and without a passivation layer on the cell contact tracks. The influence of the number of electrodes on the enhancement of the extracted impedance for different types of cells was provided and discussed. Different types of cells are experimentally tested, such as viable and non-viable MCF7, along with different buffer solutions. This study confirms the importance of µEIS for in vivo and in vitro applications. An essential application of µEIS is to differentiate between the cells' sizes based on the measured capacitance, which is indirectly related to the cells' size. The extracted statistical values reveal the capability and sensitivity of the system to distinguish between two clusters of cells based on viability and size.</p><p><strong>Conclusion: </strong>A completely portable and easy-to-use system, including different sensor configurations, was designed, fabricated, and experimentally tested. The system was used to extract the dielectric parameters of the Microbeads and MCF7 cells immersed in different buffer solutions. The high sensitivity of the readout circuit, which enables it to extract the difference between the viable and non-viable cells, was provided and discussed. The proposed system can extract and differentiate between different types of cells based on cells' sizes; two other polystyrene microbeads with different sizes are tested. Contamination that may happen was avoided using a Microfluidic chamber. The study shows a good match between the experiment and simulation results. The study also shows the optimum number of interdigitated electrodes that can be used to extract the variation in the dielectric parameters of the cells without leakage current or parasitic capacitance.</p>","PeriodicalId":72425,"journal":{"name":"BMC biomedical engineering","volume":"5 1","pages":"4"},"PeriodicalIF":0.0,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10150490/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9400184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Fourteen days free-living evaluation of an open-source algorithm for counting steps in healthy adults with a large variation in physical activity level. 对体力活动水平变化较大的健康成人计算步数的开源算法进行14天自由生活评估。
BMC biomedical engineering Pub Date : 2023-04-14 DOI: 10.1186/s42490-023-00071-9
Ivar Holm, Jonatan Fridolfsson, Mats Börjesson, Daniel Arvidsson
{"title":"Fourteen days free-living evaluation of an open-source algorithm for counting steps in healthy adults with a large variation in physical activity level.","authors":"Ivar Holm,&nbsp;Jonatan Fridolfsson,&nbsp;Mats Börjesson,&nbsp;Daniel Arvidsson","doi":"10.1186/s42490-023-00071-9","DOIUrl":"https://doi.org/10.1186/s42490-023-00071-9","url":null,"abstract":"<p><strong>Background: </strong>The number of steps by an individual, has traditionally been assessed with a pedometer, but increasingly with an accelerometer. The ActiLife software (AL) is the most common way to process accelerometer data to steps, but it is not open source which could aid understanding of measurement errors. The aim of this study was to compare assessment of steps from the open-source algorithm part of the GGIR package and two closed algorithms, AL normal (n) and low frequency extension (lfe) algorithms to Yamax pedometer, as reference. Free-living in healthy adults with a wide range of activity level was studied.</p><p><strong>Results: </strong>A total 46 participants divided by activity level into a low-medium active group and a high active group, wore both an accelerometer and a pedometer for 14 days. In total 614 complete days were analyzed. A significant correlation between Yamax and all three algorithms was shown but all comparisons were significantly different with paired t-tests except for ALn vs Yamax. The mean bias shows that ALn slightly overestimated steps in the low-medium active group and slightly underestimated steps in high active group. The mean percentage error (MAPE) was 17% and 9% respectively. The ALlfe overestimated steps by approximately 6700/day in both groups and the MAPE was 88% in the low-medium active group and 43% in the high active group. The open-source algorithm underestimated steps with a systematic error related to activity level. The MAPE was 28% in the low-medium active group and 48% in the high active group.</p><p><strong>Conclusion: </strong>The open-source algorithm captures steps fairly well in low-medium active individuals when comparing with Yamax pedometer, but did not show satisfactory results in more active individuals, indicating that it must be modified before implemented in population research. The AL algorithm without the low frequency extension measures similar number of steps as Yamax in free-living and is a useful alternative before a valid open-source algorithm is available.</p>","PeriodicalId":72425,"journal":{"name":"BMC biomedical engineering","volume":"5 1","pages":"3"},"PeriodicalIF":0.0,"publicationDate":"2023-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10103381/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9310777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Parametric study of a bubble removing device for hemodialysis. 血液透析除泡装置的参数化研究。
BMC biomedical engineering Pub Date : 2023-04-01 DOI: 10.1186/s42490-023-00069-3
Poonnapa Chaichudchaval, Nunthapat Fuangkamonvet, Supajitra Piboonlapudom, Teeranoot Chanthasopeephan
{"title":"Parametric study of a bubble removing device for hemodialysis.","authors":"Poonnapa Chaichudchaval,&nbsp;Nunthapat Fuangkamonvet,&nbsp;Supajitra Piboonlapudom,&nbsp;Teeranoot Chanthasopeephan","doi":"10.1186/s42490-023-00069-3","DOIUrl":"https://doi.org/10.1186/s42490-023-00069-3","url":null,"abstract":"<p><strong>Background: </strong>This paper sets out to design a device for removing bubbles during the process of hemodialysis. The concept is to guide the bubbles while traveling through the device and eventually the bubbles can be collected. The design focuses on the analysis of various parameters i.e. inlet diameter, inlet velocity and size of the pitch. The initial diameters of Models 1 and 2 have thread regions of 6 and 10 mm, respectively.</p><p><strong>Parameters: </strong>Swirl number, Taylor number, Lift coefficient along with pressure field are also implemented.</p><p><strong>Results: </strong>Based on computational fluid dynamics analysis, the bubbles' average maximum equilibrium position for Model 1 reached 1.995 mm, being greater than that of Model 2, which attained 1.833 mm. Then, 16,000 bubbles were released into Model 1 to validate the performance of the model. This number of bubbles is typically found in the dialysis. Thus, it was found that 81.53% of bubbles passed through the radial region of 2.20 ± 0.30 mm. The appropriate collecting plane was at 100 mm, as measured from the inlet position along the axial axis. The Taylor number, Lift coefficient, and Swirl number proved to be significant parameters for describing the movement of the bubbles. Results were based on multiple inlet velocities. It is seen that Model 3, the improved model with unequal pitch, reached a maximum equilibrium position of 2.24 mm.</p><p><strong>Conclusion: </strong>Overall, results demonstrated that Model 1 was the best design compared to Models 2 and 3. Model 1 was found capable of guiding the bubbles to the edge location and did not generate extra bubbles. Thus, the parametric study, herein, can be used as a prototype for removing bubbles during the process of hemodialysis.</p>","PeriodicalId":72425,"journal":{"name":"BMC biomedical engineering","volume":"5 1","pages":"2"},"PeriodicalIF":0.0,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10067188/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9245808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wavelet image scattering based glaucoma detection. 基于小波图像散射的青光眼检测。
BMC biomedical engineering Pub Date : 2023-03-02 DOI: 10.1186/s42490-023-00067-5
Hafeez Alani Agboola, Jesuloluwa Emmanuel Zaccheus
{"title":"Wavelet image scattering based glaucoma detection.","authors":"Hafeez Alani Agboola,&nbsp;Jesuloluwa Emmanuel Zaccheus","doi":"10.1186/s42490-023-00067-5","DOIUrl":"https://doi.org/10.1186/s42490-023-00067-5","url":null,"abstract":"<p><strong>Background: </strong>The ever-growing need for cheap, simple, fast, and accurate healthcare solutions spurred a lot of research activities which are aimed at the reliable deployment of artificial intelligence in the medical fields. However, this has proved to be a daunting task especially when looking to make automated diagnoses using biomedical image data. Biomedical image data have complex patterns which human experts find very hard to comprehend. Against this backdrop, we applied a representation or feature learning algorithm: Invariant Scattering Convolution Network or Wavelet scattering Network to retinal fundus images and studied the the efficacy of the automatically extracted features therefrom for glaucoma diagnosis/detection. The influence of wavelet scattering network parameter settings as well as 2-D channel image type on the detection correctness is also examined. Our work is a distinct departure from the usual method where wavelet transform is applied to pre-processed retinal fundus images and handcrafted features are extracted from the decomposition results. Here, the RIM-ONE DL image dataset was fed into a wavelet scattering network developed in the Matlab environment to achieve a stage-wise decomposition process called wavelet scattering of the retinal fundus images thereby, automatically learning features from the images. These features were then used to build simple and computationally cheap classification algorithms.</p><p><strong>Results: </strong>Maximum detection correctness of 98% was achieved on the held-out test set. Detection correctness is highly sensitive to scattering network parameter setting and 2-D channel image type.</p><p><strong>Conclusion: </strong>A superficial comparison of the classification results obtained from our work and those obtained using a convolutional neural network underscores the potentiality of the proposed method for glaucoma detection.</p>","PeriodicalId":72425,"journal":{"name":"BMC biomedical engineering","volume":"5 1","pages":"1"},"PeriodicalIF":0.0,"publicationDate":"2023-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9979468/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10826651","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Experimental validation of a portable tidal volume indicator for bag valve mask ventilation. 用于袋阀面罩通气的便携式潮气量指示器的实验验证。
BMC biomedical engineering Pub Date : 2022-11-17 DOI: 10.1186/s42490-022-00066-y
Benjamin S Maxey, Luke A White, Giovanni F Solitro, Steven A Conrad, J Steven Alexander
{"title":"Experimental validation of a portable tidal volume indicator for bag valve mask ventilation.","authors":"Benjamin S Maxey, Luke A White, Giovanni F Solitro, Steven A Conrad, J Steven Alexander","doi":"10.1186/s42490-022-00066-y","DOIUrl":"10.1186/s42490-022-00066-y","url":null,"abstract":"<p><strong>Introduction: </strong>Short-term emergency ventilation is most typically accomplished through bag valve mask (BVM) techniques. BVMs like the AMBU<sup>®</sup> bag are cost-effective and highly portable but are also highly prone to user error, especially in high-stress emergent situations. Inaccurate and inappropriate ventilation has the potential to inflict great injury to patients through hyper- and hypoventilation. Here, we present the BVM Emergency Narration-Guided Instrument (BENGI) - a tidal volume feedback monitoring device that provides instantaneous visual and audio feedback on delivered tidal volumes, respiratory rates, and inspiratory/expiratory times. Providing feedback on the depth and regularity of respirations enables providers to deliver more consistent and accurate tidal volumes and rates. We describe the design, assembly, and validation of the BENGI as a practical tool to reduce manual ventilation-induced lung injury.</p><p><strong>Methods: </strong>The prototype BENGI was assembled with custom 3D-printed housing and commercially available electronic components. A mass flow sensor in the central channel of the device measures air flow, which is used to calculate tidal volume. Tidal volumes are displayed via an LED ring affixed to the top of the BENGI. Additional feedback is provided through a speaker in the device. Central processing is accomplished through an Arduino microcontroller. Validation of the BENGI was accomplished using benchtop simulation with a clinical ventilator, BVM, and manikin test lung. Known respiratory quantities were delivered by the ventilator which were then compared to measurements from the BENGI to validate the accuracy of flow measurements, tidal volume calculations, and audio cue triggers.</p><p><strong>Results: </strong>BENGI tidal volume measurements were found to lie within 4% of true delivered tidal volume values (95% CI of 0.53 to 3.7%) when breaths were delivered with 1-s inspiratory times, with similar performance for breaths delivered with 0.5-s inspiratory times (95% CI of 1.1 to 6.7%) and 2-s inspiratory times (95% CI of -1.1 to 2.3%). Audio cues \"Bag faster\" (1.84 to 2.03 s), \"Bag slower\" (0.35 to 0.41 s), and \"Leak detected\" (43 to 50%) were triggered close to target trigger values (2.00 s, 0.50 s, and 50%, respectively) across varying tidal volumes.</p><p><strong>Conclusions: </strong>The BENGI achieved its proposed goals of accurately measuring and reporting tidal volumes delivered through BVM systems, providing immediate feedback on the quality of respiratory performance through audio and visual cues. The BENGI has the potential to reduce manual ventilation-induced lung injury and improve patient outcomes by providing accurate feedback on ventilatory parameters.</p>","PeriodicalId":72425,"journal":{"name":"BMC biomedical engineering","volume":" ","pages":"9"},"PeriodicalIF":0.0,"publicationDate":"2022-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9668705/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40706274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An open-access plug-in program for 3D modelling distinct material properties of cortical and trabecular bone. 一个开放访问的插件程序,用于3D建模不同的皮质骨和小梁骨的材料特性。
BMC biomedical engineering Pub Date : 2022-09-24 DOI: 10.1186/s42490-022-00065-z
Gregory R Roytman, Matan Cutler, Kenneth Milligan, Steven M Tommasini, Daniel H Wiznia
{"title":"An open-access plug-in program for 3D modelling distinct material properties of cortical and trabecular bone.","authors":"Gregory R Roytman,&nbsp;Matan Cutler,&nbsp;Kenneth Milligan,&nbsp;Steven M Tommasini,&nbsp;Daniel H Wiznia","doi":"10.1186/s42490-022-00065-z","DOIUrl":"https://doi.org/10.1186/s42490-022-00065-z","url":null,"abstract":"<p><strong>Background: </strong>Finite element modelling the material behavior of bone in-silico is a powerful tool to predict the best suited surgical treatment for individual patients.</p><p><strong>Results: </strong>We demonstrate the development and use of a pre-processing plug-in program with a 3D modelling image processing software suite (Synopsys Simpleware, ScanIP) to assist with identifying, isolating, and defining cortical and trabecular bone material properties from patient specific computed tomography scans. The workflow starts by calibrating grayscale values of each constituent element with a phantom - a standardized object with defined densities. Using an established power law equation, we convert the apparent density value per voxel to a Young's Modulus. The resulting \"calibrated\" scan can be used for modeling and in-silico experimentation with Finite Element Analysis.</p><p><strong>Conclusions: </strong>This process allows for the creation of realistic and personalized simulations to inform a surgeon's decision-making. We have made this plug-in program open and accessible as a supplemental file.</p>","PeriodicalId":72425,"journal":{"name":"BMC biomedical engineering","volume":"4 1","pages":"8"},"PeriodicalIF":0.0,"publicationDate":"2022-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9509591/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10740442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The effects of electrical stimulation on glial cell behaviour. 电刺激对神经胶质细胞行为的影响。
BMC biomedical engineering Pub Date : 2022-09-03 DOI: 10.1186/s42490-022-00064-0
Christopher T Tsui, Preet Lal, Katelyn V R Fox, Matthew A Churchward, Kathryn G Todd
{"title":"The effects of electrical stimulation on glial cell behaviour.","authors":"Christopher T Tsui,&nbsp;Preet Lal,&nbsp;Katelyn V R Fox,&nbsp;Matthew A Churchward,&nbsp;Kathryn G Todd","doi":"10.1186/s42490-022-00064-0","DOIUrl":"https://doi.org/10.1186/s42490-022-00064-0","url":null,"abstract":"<p><p>Neural interface devices interact with the central nervous system (CNS) to substitute for some sort of functional deficit and improve quality of life for persons with disabilities. Design of safe, biocompatible neural interface devices is a fast-emerging field of neuroscience research. Development of invasive implant materials designed to directly interface with brain or spinal cord tissue has focussed on mitigation of glial scar reactivity toward the implant itself, but little exists in the literature that directly documents the effects of electrical stimulation on glial cells. In this review, a survey of studies documenting such effects has been compiled and categorized based on the various types of stimulation paradigms used and their observed effects on glia. A hybrid neuroscience cell biology-engineering perspective is offered to highlight considerations that must be made in both disciplines in the development of a safe implant. To advance knowledge on how electrical stimulation affects glia, we also suggest experiments elucidating electrochemical reactions that may occur as a result of electrical stimulation and how such reactions may affect glia. Designing a biocompatible stimulation paradigm should be a forefront consideration in the development of a device with improved safety and longevity.</p>","PeriodicalId":72425,"journal":{"name":"BMC biomedical engineering","volume":" ","pages":"7"},"PeriodicalIF":0.0,"publicationDate":"2022-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9441051/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40345852","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信