A handheld device for intra-cavity and ex vivo fluorescence imaging of breast conserving surgery margins with 5-aminolevulinic acid.

Christopher Gibson, Shirley C Wang, Arcturus Phoon, Nayana Thalanki Anantha, Kathryn Ottolino-Perry, Stephen Petropoulos, Zuha Qureshi, Vasanth Subramanian, Anam Shahid, Cristiana O'Brien, Steven Carcone, Suzanne Chung, Teresa Tsui, Viktor Son, Mayleen Sukhram, Fannong Meng, Susan J Done, Alexandra M Easson, Tulin Cil, Michael Reedijk, Wey L Leong, Ralph S DaCosta
{"title":"A handheld device for intra-cavity and ex vivo fluorescence imaging of breast conserving surgery margins with 5-aminolevulinic acid.","authors":"Christopher Gibson, Shirley C Wang, Arcturus Phoon, Nayana Thalanki Anantha, Kathryn Ottolino-Perry, Stephen Petropoulos, Zuha Qureshi, Vasanth Subramanian, Anam Shahid, Cristiana O'Brien, Steven Carcone, Suzanne Chung, Teresa Tsui, Viktor Son, Mayleen Sukhram, Fannong Meng, Susan J Done, Alexandra M Easson, Tulin Cil, Michael Reedijk, Wey L Leong, Ralph S DaCosta","doi":"10.1186/s42490-024-00079-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Visualization of cancer during breast conserving surgery (BCS) remains challenging; the BCS reoperation rate is reported to be 20-70% of patients. An urgent clinical need exists for real-time intraoperative visualization of breast carcinomas during BCS. We previously demonstrated the ability of a prototype imaging device to identify breast carcinoma in excised surgical specimens following 5-aminolevulinic acid (5-ALA) administration. However, this prototype device was not designed to image the surgical cavity for remaining carcinoma after the excised lumpectomy specimen is removed. A new handheld fluorescence (FL) imaging prototype device, designed to image both excised specimens and within the surgical cavity, was assessed in a clinical trial to evaluate its clinical utility for first-in-human, real-time intraoperative imaging during index BCS.</p><p><strong>Results: </strong>The imaging device combines consumer-grade imaging sensory technology with miniature light-emitting diodes (LEDs) and multiband optical filtering to capture high-resolution white light (WL) and FL digital images and videos. The technology allows for visualization of protoporphyrin IX (PpIX), which fluoresces red when excited by violet-blue light. To date, <math><mrow><mi>n</mi> <mo>=</mo> <mn>17</mn></mrow> </math> patients have received <math><mrow><mn>20</mn> <mfrac><mtext>mg</mtext> <mtext>kg</mtext></mfrac> </mrow> </math> bodyweight (BW) 5-ALA orally 2-4 h before imaging to facilitate the accumulation of PpIX within tumour cells. Tissue types were identified based on their colour appearance. Breast tumours in sectioned lumpectomies appeared red, which contrasted against the green connective tissues and orange-brown adipose tissues. In addition, ductal carcinoma in situ (DCIS) that was missed during intraoperative standard of care was identified at the surgical margin at <1 mm depth. In addition, artifacts due to the surgical drape, illumination, and blood within the surgical cavity were discovered.</p><p><strong>Conclusions: </strong>This study has demonstrated the detection of a grossly occult positive margin intraoperatively. Artifacts from imaging within the surgical cavity have been identified, and potential mitigations have been proposed.</p><p><strong>Trial registration: </strong>ClinicalTrials.gov Identifier: NCT01837225 (Trial start date is September 2010. It was registered to ClinicalTrials.gov retrospectively on April 23, 2013, then later updated on April 9, 2020, to reflect the introduction of the new imaging device.).</p>","PeriodicalId":72425,"journal":{"name":"BMC biomedical engineering","volume":"6 1","pages":"5"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11143723/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC biomedical engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s42490-024-00079-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Visualization of cancer during breast conserving surgery (BCS) remains challenging; the BCS reoperation rate is reported to be 20-70% of patients. An urgent clinical need exists for real-time intraoperative visualization of breast carcinomas during BCS. We previously demonstrated the ability of a prototype imaging device to identify breast carcinoma in excised surgical specimens following 5-aminolevulinic acid (5-ALA) administration. However, this prototype device was not designed to image the surgical cavity for remaining carcinoma after the excised lumpectomy specimen is removed. A new handheld fluorescence (FL) imaging prototype device, designed to image both excised specimens and within the surgical cavity, was assessed in a clinical trial to evaluate its clinical utility for first-in-human, real-time intraoperative imaging during index BCS.

Results: The imaging device combines consumer-grade imaging sensory technology with miniature light-emitting diodes (LEDs) and multiband optical filtering to capture high-resolution white light (WL) and FL digital images and videos. The technology allows for visualization of protoporphyrin IX (PpIX), which fluoresces red when excited by violet-blue light. To date, n = 17 patients have received 20 mg kg bodyweight (BW) 5-ALA orally 2-4 h before imaging to facilitate the accumulation of PpIX within tumour cells. Tissue types were identified based on their colour appearance. Breast tumours in sectioned lumpectomies appeared red, which contrasted against the green connective tissues and orange-brown adipose tissues. In addition, ductal carcinoma in situ (DCIS) that was missed during intraoperative standard of care was identified at the surgical margin at <1 mm depth. In addition, artifacts due to the surgical drape, illumination, and blood within the surgical cavity were discovered.

Conclusions: This study has demonstrated the detection of a grossly occult positive margin intraoperatively. Artifacts from imaging within the surgical cavity have been identified, and potential mitigations have been proposed.

Trial registration: ClinicalTrials.gov Identifier: NCT01837225 (Trial start date is September 2010. It was registered to ClinicalTrials.gov retrospectively on April 23, 2013, then later updated on April 9, 2020, to reflect the introduction of the new imaging device.).

用 5-aminolevulinic acid 对保乳手术边缘进行腔内和体外荧光成像的手持设备。
背景:保乳手术(BCS)期间的癌症可视化仍然是一项挑战;据报道,BCS 患者的再手术率为 20-70%。临床上迫切需要在保乳手术中实现乳腺癌的术中实时可视化。我们曾展示过一种原型成像设备,能在服用 5-aminolevulinic acid(5-ALA)后识别切除手术标本中的乳腺癌。然而,这种原型设备的设计并不是为了在切除肿瘤标本后对手术腔内残留的癌细胞进行成像。我们在一项临床试验中评估了一种新型手持荧光(FL)成像原型设备,它既能对切除标本进行成像,也能对手术腔内进行成像:该成像设备将消费级成像传感技术与微型发光二极管(LED)和多波段光学滤波技术相结合,可捕捉高分辨率白光(WL)和 FL 数字图像和视频。该技术可实现原卟啉 IX(PpIX)的可视化,PpIX 在紫蓝光的激发下会发出红色荧光。迄今为止,已有17名患者在成像前2-4小时口服了20毫克/千克体重(BW)的5-ALA,以促进PpIX在肿瘤细胞内的积累。根据组织的颜色外观确定组织类型。肿块切片中的乳腺肿瘤呈红色,与绿色结缔组织和橙棕色脂肪组织形成鲜明对比。此外,术中标准护理中遗漏的乳腺导管原位癌(DCIS)也在结论中的手术边缘被识别出来:这项研究表明,术中可检测到严重隐匿的阳性边缘。发现了手术腔内成像的伪影,并提出了可能的缓解方法:试验注册:ClinicalTrials.gov Identifier:NCT01837225 (试验开始日期为 2010 年 9 月。试验注册:ClinicalTrials.gov Identifier:NCT01837225(试验开始日期为 2010 年 9 月,于 2013 年 4 月 23 日在 ClinicalTrials.gov 进行了回顾性注册,随后于 2020 年 4 月 9 日进行了更新,以反映新成像设备的引入)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
19 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信