BJR open最新文献

筛选
英文 中文
Unlocking the potential of photon counting detector CT for paediatric imaging: a pictorial essay. 发掘光子计数探测器 CT 在儿科成像中的潜力:一篇图文并茂的文章。
BJR open Pub Date : 2024-07-09 eCollection Date: 2024-01-01 DOI: 10.1093/bjro/tzae015
Ieva Aliukonyte, Daan Caudri, Ronald Booij, Marcel van Straten, Marcel L Dijkshoorn, Ricardo P J Budde, Edwin H G Oei, Luca Saba, Harm A W M Tiddens, Pierluigi Ciet
{"title":"Unlocking the potential of photon counting detector CT for paediatric imaging: a pictorial essay.","authors":"Ieva Aliukonyte, Daan Caudri, Ronald Booij, Marcel van Straten, Marcel L Dijkshoorn, Ricardo P J Budde, Edwin H G Oei, Luca Saba, Harm A W M Tiddens, Pierluigi Ciet","doi":"10.1093/bjro/tzae015","DOIUrl":"10.1093/bjro/tzae015","url":null,"abstract":"<p><p>Recent advancements in CT technology have introduced a revolutionary innovation to practice known as the Photon-Counting detector (PCD) CT imaging. The pivotal hardware enhancement of the PCD-CT scanner lies in its detectors, which consist of smaller pixels than standard detectors and allow direct conversion of individual X-rays to electrical signals. As a result, CT images are reconstructed at higher spatial resolution (as low as 0.2 mm) and reduced overall noise, at no expense of an increased radiation dose. These features are crucial for paediatric imaging, especially for infants and young children, where anatomical structures are notably smaller than in adults and in whom keeping dose as low as possible is especially relevant. Since January 2022, our hospital has had the opportunity to work with PCD-CT technology for paediatric imaging. This pictorial review will showcase clinical examples of PCD-CT imaging in children. The aim of this pictorial review is to outline the potential paediatric applications of PCD-CT across different anatomical regions, as well as to discuss the benefits in utilizing PCD-CT in comparison to conventional standard energy integrating detector CT.</p>","PeriodicalId":72419,"journal":{"name":"BJR open","volume":"6 1","pages":"tzae015"},"PeriodicalIF":0.0,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11254292/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141636037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessment of heart-substructures auto-contouring accuracy for application in heart-sparing radiotherapy for lung cancer. 评估应用于肺癌保心放疗的心脏亚结构自动轮廓扫描的准确性。
BJR open Pub Date : 2024-05-08 eCollection Date: 2024-01-01 DOI: 10.1093/bjro/tzae006
Tom Marchant, Gareth Price, Alan McWilliam, Edward Henderson, Dónal McSweeney, Marcel van Herk, Kathryn Banfill, Matthias Schmitt, Jennifer King, Claire Barker, Corinne Faivre-Finn
{"title":"Assessment of heart-substructures auto-contouring accuracy for application in heart-sparing radiotherapy for lung cancer.","authors":"Tom Marchant, Gareth Price, Alan McWilliam, Edward Henderson, Dónal McSweeney, Marcel van Herk, Kathryn Banfill, Matthias Schmitt, Jennifer King, Claire Barker, Corinne Faivre-Finn","doi":"10.1093/bjro/tzae006","DOIUrl":"10.1093/bjro/tzae006","url":null,"abstract":"<p><strong>Objectives: </strong>We validated an auto-contouring algorithm for heart substructures in lung cancer patients, aiming to establish its accuracy and reliability for radiotherapy (RT) planning. We focus on contouring an amalgamated set of subregions in the base of the heart considered to be a new organ at risk, the cardiac avoidance area (CAA), to enable maximum dose limit implementation in lung RT planning.</p><p><strong>Methods: </strong>The study validates a deep-learning model specifically adapted for auto-contouring the CAA (which includes the right atrium, aortic valve root, and proximal segments of the left and right coronary arteries). Geometric, dosimetric, quantitative, and qualitative validation measures are reported. Comparison with manual contours, including assessment of interobserver variability, and robustness testing over 198 cases are also conducted.</p><p><strong>Results: </strong>Geometric validation shows that auto-contouring performance lies within the expected range of manual observer variability despite being slightly poorer than the average of manual observers (mean surface distance for CAA of 1.6 vs 1.2 mm, dice similarity coefficient of 0.86 vs 0.88). Dosimetric validation demonstrates consistency between plans optimized using auto-contours and manual contours. Robustness testing confirms acceptable contours in all cases, with 80% rated as \"Good\" and the remaining 20% as \"Useful.\"</p><p><strong>Conclusions: </strong>The auto-contouring algorithm for heart substructures in lung cancer patients demonstrates acceptable and comparable performance to human observers.</p><p><strong>Advances in knowledge: </strong>Accurate and reliable auto-contouring results for the CAA facilitate the implementation of a maximum dose limit to this region in lung RT planning, which has now been introduced in the routine setting at our institution.</p>","PeriodicalId":72419,"journal":{"name":"BJR open","volume":"6 1","pages":"tzae006"},"PeriodicalIF":0.0,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11087931/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140913561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cementoplasty to cryoablation: review and current status. 从水泥成形术到冷冻消融术:回顾与现状。
BJR open Pub Date : 2024-02-29 eCollection Date: 2024-01-01 DOI: 10.1093/bjro/tzae007
Jin Rong Tan, Yet Yen Yan, Adnan Sheikh, Hugue Ouellette, Paul Mallinson, Peter L Munk
{"title":"Cementoplasty to cryoablation: review and current status.","authors":"Jin Rong Tan, Yet Yen Yan, Adnan Sheikh, Hugue Ouellette, Paul Mallinson, Peter L Munk","doi":"10.1093/bjro/tzae007","DOIUrl":"10.1093/bjro/tzae007","url":null,"abstract":"<p><p>Recent advances in percutaneous image-guided techniques have empowered interventional radiologists with diverse treatment options for the management of musculoskeletal lesions. Of note, there is growing utility for cementoplasty procedures, with indications ranging from stabilization of bone metastases to treatment of painful vertebral compression fractures. Likewise, cryoablation has emerged as a viable adjunct in the treatment of both primary and secondary bone and soft tissue neoplasms. These treatment options have been progressively incorporated into the multidisciplinary approach to holistic care of patients, alongside conventional radiotherapy, systemic therapy, surgery, and analgesia. This review article serves to outline the indications, technical considerations, latest developments, and evidence for the burgeoning role of cementoplasty and cryoablation in the musculoskeletal system, with an emphasis on pain palliation and tumour control.</p>","PeriodicalId":72419,"journal":{"name":"BJR open","volume":"6 1","pages":"tzae007"},"PeriodicalIF":0.0,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10965423/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140308127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to: Commercially available artificial intelligence tools for fracture detection: the evidence. 更正:用于骨折检测的商用人工智能工具:证据。
BJR open Pub Date : 2024-02-22 eCollection Date: 2024-01-01 DOI: 10.1093/bjro/tzae004
{"title":"Correction to: Commercially available artificial intelligence tools for fracture detection: the evidence.","authors":"","doi":"10.1093/bjro/tzae004","DOIUrl":"https://doi.org/10.1093/bjro/tzae004","url":null,"abstract":"<p><p>[This corrects the article DOI: 10.1093/bjro/tzad005.].</p>","PeriodicalId":72419,"journal":{"name":"BJR open","volume":"6 1","pages":"tzae004"},"PeriodicalIF":0.0,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10885210/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139974784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A multi-centre stereotactic radiosurgery planning study of multiple brain metastases using isocentric linear accelerators with 5 and 2.5 mm width multi-leaf collimators, CyberKnife and Gamma Knife. 一项多中心立体定向放射外科规划研究,使用带有 5 毫米和 2.5 毫米宽多叶准直器的等中心直线加速器、CyberKnife 和伽玛刀对多发性脑转移瘤进行治疗。
BJR open Pub Date : 2024-01-30 eCollection Date: 2024-01-01 DOI: 10.1093/bjro/tzae003
Scott Hanvey, Philippa Hackett, Lucy Winch, Elizabeth Lim, Robin Laney, Liam Welsh
{"title":"A multi-centre stereotactic radiosurgery planning study of multiple brain metastases using isocentric linear accelerators with 5 and 2.5 mm width multi-leaf collimators, CyberKnife and Gamma Knife.","authors":"Scott Hanvey, Philippa Hackett, Lucy Winch, Elizabeth Lim, Robin Laney, Liam Welsh","doi":"10.1093/bjro/tzae003","DOIUrl":"10.1093/bjro/tzae003","url":null,"abstract":"<p><strong>Objectives: </strong>This study compared plans of high definition (HD), 2.5 mm width multi-leaf collimator (MLC), to standard, 5 mm width, isocentric linear accelerator (linacs), CyberKnife (CK), and Gamma Knife (GK) for stereotactic radiosurgery (SRS) techniques on multiple brain metastases.</p><p><strong>Methods: </strong>Eleven patients undergoing SRS for multiple brain metastases were chosen. Targets and organs at risk (OARs) were delineated and optimized SRS plans were generated and compared.</p><p><strong>Results: </strong>The linacs delivered similar conformity index (CI) values, but the gradient index (GI) for HD MLCs was significantly lower (<i>P</i>-value <.001). Half the OARs received significantly lower dose using HD MLCs. CK delivered a significantly lower CI than HD MLC linac (<i>P</i>-value <.001), but a significantly higher GI (<i>P</i>-value <.001). CI was significantly improved with the HD MLC linac compared to GK (<i>P</i>-value = 4.591 × 10<sup>-3</sup>), however, GK delivered a significantly lower GI (<i>P</i>-value <.001). OAR dose sparing was similar for the HD MLC TL, CK, and GK.</p><p><strong>Conclusions: </strong>Comparing linacs for SRS, the preferred choice is HD MLCs. Similar results were achieved with the HD MLC linac, CK, or GK, with each delivering significant improvements in different aspects of plan quality.</p><p><strong>Advances in knowledge: </strong>This article is the first to compare HD and standard width MLC linac plans using a combination of single isocentre volumetric modulated arc therapy and multi-isocentric dynamic conformal arc plans as required, which is a more clinically relevant assessment. Furthermore, it compares these plans with CK and GK, assessing the relative merits of each technique.</p>","PeriodicalId":72419,"journal":{"name":"BJR open","volume":"6 1","pages":"tzae003"},"PeriodicalIF":0.0,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10873585/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139900989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A real-world evaluation of the diagnostic accuracy of radiologists using positive predictive values verified from deep learning and natural language processing chest algorithms deployed retrospectively. 利用深度学习和自然语言处理胸部算法验证的阳性预测值,对放射科医生的诊断准确性进行真实世界评估。
BJR open Pub Date : 2023-12-12 eCollection Date: 2024-01-01 DOI: 10.1093/bjro/tzad009
Bahadar S Bhatia, John F Morlese, Sarah Yusuf, Yiting Xie, Bob Schallhorn, David Gruen
{"title":"A real-world evaluation of the diagnostic accuracy of radiologists using positive predictive values verified from deep learning and natural language processing chest algorithms deployed retrospectively.","authors":"Bahadar S Bhatia, John F Morlese, Sarah Yusuf, Yiting Xie, Bob Schallhorn, David Gruen","doi":"10.1093/bjro/tzad009","DOIUrl":"10.1093/bjro/tzad009","url":null,"abstract":"<p><strong>Objectives: </strong>This diagnostic study assessed the accuracy of radiologists retrospectively, using the deep learning and natural language processing chest algorithms implemented in Clinical Review version 3.2 for: pneumothorax, rib fractures in digital chest X-ray radiographs (CXR); aortic aneurysm, pulmonary nodules, emphysema, and pulmonary embolism in CT images.</p><p><strong>Methods: </strong>The study design was double-blind (artificial intelligence [AI] algorithms and humans), retrospective, non-interventional, and at a single NHS Trust. Adult patients (≥18 years old) scheduled for CXR and CT were invited to enroll as participants through an opt-out process. Reports and images were de-identified, processed retrospectively, and AI-flagged discrepant findings were assigned to two lead radiologists, each blinded to patient identifiers and original radiologist. The radiologist's findings for each clinical condition were tallied as a verified discrepancy (true positive) or not (false positive).</p><p><strong>Results: </strong>The missed findings were: 0.02% rib fractures, 0.51% aortic aneurysm, 0.32% pulmonary nodules, 0.92% emphysema, and 0.28% pulmonary embolism. The positive predictive values (PPVs) were: pneumothorax (0%), rib fractures (5.6%), aortic dilatation (43.2%), pulmonary emphysema (46.0%), pulmonary embolus (11.5%), and pulmonary nodules (9.2%). The PPV for pneumothorax was nil owing to lack of available studies that were analysed for outpatient activity.</p><p><strong>Conclusions: </strong>The number of missed findings was far less than generally predicted. The chest algorithms deployed retrospectively were a useful quality tool and AI augmented the radiologists' workflow.</p><p><strong>Advances in knowledge: </strong>The diagnostic accuracy of our radiologists generated missed findings of 0.02% for rib fractures CXR, 0.51% for aortic dilatation, 0.32% for pulmonary nodule, 0.92% for pulmonary emphysema, and 0.28% for pulmonary embolism for CT studies, all retrospectively evaluated with AI used as a quality tool to flag potential missed findings. It is important to account for prevalence of these chest conditions in clinical context and use appropriate clinical thresholds for decision-making, not relying solely on AI.</p>","PeriodicalId":72419,"journal":{"name":"BJR open","volume":"6 1","pages":"tzad009"},"PeriodicalIF":0.0,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10860529/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139731175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
State of the art: radiomics and radiomics-related artificial intelligence on the road to clinical translation. 最新技术:放射组学和放射组学相关人工智能的临床转化之路。
BJR open Pub Date : 2023-12-12 eCollection Date: 2024-01-01 DOI: 10.1093/bjro/tzad004
Shweta Majumder, Sharyn Katz, Despina Kontos, Leonid Roshkovan
{"title":"State of the art: radiomics and radiomics-related artificial intelligence on the road to clinical translation.","authors":"Shweta Majumder, Sharyn Katz, Despina Kontos, Leonid Roshkovan","doi":"10.1093/bjro/tzad004","DOIUrl":"10.1093/bjro/tzad004","url":null,"abstract":"<p><p>Radiomics and artificial intelligence carry the promise of increased precision in oncologic imaging assessments due to the ability of harnessing thousands of occult digital imaging features embedded in conventional medical imaging data. While powerful, these technologies suffer from a number of sources of variability that currently impede clinical translation. In order to overcome this impediment, there is a need to control for these sources of variability through harmonization of imaging data acquisition across institutions, construction of standardized imaging protocols that maximize the acquisition of these features, harmonization of post-processing techniques, and big data resources to properly power studies for hypothesis testing. For this to be accomplished, it will be critical to have multidisciplinary and multi-institutional collaboration.</p>","PeriodicalId":72419,"journal":{"name":"BJR open","volume":"6 1","pages":"tzad004"},"PeriodicalIF":0.0,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10860524/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139731182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparing the performance of a deep learning-based lung gross tumour volume segmentation algorithm before and after transfer learning in a new hospital. 比较基于深度学习的肺毛肿瘤体积分割算法在新医院进行迁移学习前后的性能。
BJR open Pub Date : 2023-12-12 eCollection Date: 2024-01-01 DOI: 10.1093/bjro/tzad008
Chaitanya Kulkarni, Umesh Sherkhane, Vinay Jaiswar, Sneha Mithun, Dinesh Mysore Siddu, Venkatesh Rangarajan, Andre Dekker, Alberto Traverso, Ashish Jha, Leonard Wee
{"title":"Comparing the performance of a deep learning-based lung gross tumour volume segmentation algorithm before and after transfer learning in a new hospital.","authors":"Chaitanya Kulkarni, Umesh Sherkhane, Vinay Jaiswar, Sneha Mithun, Dinesh Mysore Siddu, Venkatesh Rangarajan, Andre Dekker, Alberto Traverso, Ashish Jha, Leonard Wee","doi":"10.1093/bjro/tzad008","DOIUrl":"10.1093/bjro/tzad008","url":null,"abstract":"<p><strong>Objectives: </strong>Radiation therapy for lung cancer requires a gross tumour volume (GTV) to be carefully outlined by a skilled radiation oncologist (RO) to accurately pinpoint high radiation dose to a malignant mass while simultaneously minimizing radiation damage to adjacent normal tissues. This is manually intensive and tedious however, it is feasible to train a deep learning (DL) neural network that could assist ROs to delineate the GTV. However, DL trained on large openly accessible data sets might not perform well when applied to a superficially similar task but in a different clinical setting. In this work, we tested the performance of DL automatic lung GTV segmentation model trained on open-access Dutch data when used on Indian patients from a large public tertiary hospital, and hypothesized that <i>generic</i> DL performance could be improved for a specific <i>local</i> clinical context, by means of modest transfer-learning on a small representative local subset.</p><p><strong>Methods: </strong>X-ray computed tomography (CT) series in a public data set called \"NSCLC-Radiomics\" from The Cancer Imaging Archive was first used to train a DL-based lung GTV segmentation model (Model 1). Its performance was assessed using a different open access data set (Interobserver1) of Dutch subjects plus a private Indian data set from a local tertiary hospital (Test Set 2). Another Indian data set (Retrain Set 1) was used to fine-tune the former DL model using a transfer learning method. The Indian data sets were taken from CT of a hybrid scanner based in nuclear medicine, but the GTV was drawn by skilled Indian ROs. The final (after fine-tuning) model (Model 2) was then re-evaluated in \"Interobserver1\" and \"Test Set 2.\" Dice similarity coefficient (DSC), precision, and recall were used as geometric segmentation performance metrics.</p><p><strong>Results: </strong>Model 1 trained exclusively on Dutch scans showed a significant fall in performance when tested on \"Test Set 2.\" However, the DSC of Model 2 recovered by 14 percentage points when evaluated in the same test set. Precision and recall showed a similar rebound of performance after transfer learning, in spite of using a comparatively small sample size. The performance of both models, before and after the fine-tuning, did not significantly change the segmentation performance in \"Interobserver1.\"</p><p><strong>Conclusions: </strong>A large public open-access data set was used to train a generic DL model for lung GTV segmentation, but this did not perform well initially in the Indian clinical context. Using transfer learning methods, it was feasible to efficiently and easily fine-tune the generic model using only a small number of local examples from the Indian hospital. This led to a recovery of some of the geometric segmentation performance, but the tuning did not appear to affect the performance of the model in another open-access data set.</p><p><strong>Advances in knowledge: </strong>","PeriodicalId":72419,"journal":{"name":"BJR open","volume":"6 1","pages":"tzad008"},"PeriodicalIF":0.0,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10860512/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139731179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Commercially available artificial intelligence tools for fracture detection: the evidence. 用于骨折检测的商用人工智能工具:证据。
BJR open Pub Date : 2023-12-12 eCollection Date: 2024-01-01 DOI: 10.1093/bjro/tzad005
Cato Pauling, Baris Kanber, Owen J Arthurs, Susan C Shelmerdine
{"title":"Commercially available artificial intelligence tools for fracture detection: the evidence.","authors":"Cato Pauling, Baris Kanber, Owen J Arthurs, Susan C Shelmerdine","doi":"10.1093/bjro/tzad005","DOIUrl":"10.1093/bjro/tzad005","url":null,"abstract":"<p><p>Missed fractures are a costly healthcare issue, not only negatively impacting patient lives, leading to potential long-term disability and time off work, but also responsible for high medicolegal disbursements that could otherwise be used to improve other healthcare services. When fractures are overlooked in children, they are particularly concerning as opportunities for safeguarding may be missed. Assistance from artificial intelligence (AI) in interpreting medical images may offer a possible solution for improving patient care, and several commercial AI tools are now available for radiology workflow implementation. However, information regarding their development, evidence for performance and validation as well as the intended target population is not always clear, but vital when evaluating a potential AI solution for implementation. In this article, we review the range of available products utilizing AI for fracture detection (in both adults and children) and summarize the evidence, or lack thereof, behind their performance. This will allow others to make better informed decisions when deciding which product to procure for their specific clinical requirements.</p>","PeriodicalId":72419,"journal":{"name":"BJR open","volume":"6 1","pages":"tzad005"},"PeriodicalIF":0.0,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10860511/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139731178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anatomical variations in the circle of Willis on magnetic resonance angiography in a south Trinidad population. 特立尼达岛南部人群中威利斯圈在磁共振血管造影中的解剖学变化。
BJR open Pub Date : 2023-12-12 eCollection Date: 2024-01-01 DOI: 10.1093/bjro/tzad002
Jason Diljohn, Fidel Rampersad, Paramanand Maharaj, Kristyn Parmesar
{"title":"Anatomical variations in the circle of Willis on magnetic resonance angiography in a south Trinidad population.","authors":"Jason Diljohn, Fidel Rampersad, Paramanand Maharaj, Kristyn Parmesar","doi":"10.1093/bjro/tzad002","DOIUrl":"10.1093/bjro/tzad002","url":null,"abstract":"<p><strong>Objectives: </strong>This article seeks to determine the prevalence of a complete circle of Willis (CoW) and its common morphological variations in a south Trinidad population, while also investigating the influence of gender, age, and ethnicity on CoW morphology.</p><p><strong>Methods: </strong>A prospective, descriptive, cross-sectional study was done on the magnetic resonance images for consecutive patients who had a brain MRI/magnetic resonance angiography at a tertiary health institution in south Trinidad between October 2019 and September 2020. Patients with significant cerebrovascular disease and/or a history of prior neurosurgical intervention were excluded.</p><p><strong>Results: </strong>A complete CoW was seen in 24.3%, with more complete circles observed in younger participants (≤45 years) and Afro-Trinidadians. No gender predilection for a complete CoW was demonstrated. The most common variations in the anterior and posterior parts of the circle were a hypoplastic anterior communicating artery (8.6%, <i>n</i> = 13) and bilateral aplastic posterior communicating arteries (18.4%, <i>n</i> = 28), respectively.</p><p><strong>Conclusions: </strong>Significant variations exist in the CoW of a south Trinidad population with a frequency of complete in 24.3%, and more complete circles in younger patients and Afro-Trinidadians. Gender did not influence CoW morphology.</p><p><strong>Advances in knowledge: </strong>Structural abnormalities in the CoW may be linked to future incidence of cerebrovascular diseases and should therefore be communicated to the referring physician in the written radiology report. Knowledge of variant anatomy and its frequency for a particular populations is also required by neurosurgeons and neuro-interventional radiologists to help with preprocedural planning and to minimize complications.</p>","PeriodicalId":72419,"journal":{"name":"BJR open","volume":"6 1","pages":"tzad002"},"PeriodicalIF":0.0,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10860579/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139731176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信