Biophysics reviewsPub Date : 2021-06-22eCollection Date: 2021-06-01DOI: 10.1063/5.0048725
Simone Normani, Nicholas Dalla Vedova, Guglielmo Lanzani, Francesco Scotognella, Giuseppe Maria Paternò
{"title":"Bringing the interaction of silver nanoparticles with bacteria to light.","authors":"Simone Normani, Nicholas Dalla Vedova, Guglielmo Lanzani, Francesco Scotognella, Giuseppe Maria Paternò","doi":"10.1063/5.0048725","DOIUrl":"https://doi.org/10.1063/5.0048725","url":null,"abstract":"<p><p>In past decades, the exploitation of silver nanoparticles in novel antibacterial and detection devices has risen to prominence, owing to the well-known specific interaction of silver with bacteria. The vast majority of the investigations focus on the investigation over the mechanism of action underpinning bacterial eradication, while few efforts have been devoted to the study of the modification of silver optical properties upon interaction with bacteria. Specifically, given the characteristic localized surface plasmon resonance of silver nanostructures, which is sensitive to changes in the charge carrier density or in the dielectric environment, these systems can offer a handle in the detection of bacteria pathogens. In this review, we present the state of art of the research activity on the interaction of silver nanoparticles with bacteria, with strong emphasis on the modification of their optical properties. This may indeed lead to easy color reading of bacterial tests and pave the way to the development of nanotechnologic silver-based bacterial detection systems and drug-screening platforms.</p>","PeriodicalId":72405,"journal":{"name":"Biophysics reviews","volume":"2 2","pages":"021304"},"PeriodicalIF":0.0,"publicationDate":"2021-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10903507/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140177977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Biophysics reviewsPub Date : 2021-06-01Epub Date: 2021-06-15DOI: 10.1063/5.0050059
Kiersten M Ruff, Furqan Dar, Rohit V Pappu
{"title":"Polyphasic linkage and the impact of ligand binding on the regulation of biomolecular condensates.","authors":"Kiersten M Ruff, Furqan Dar, Rohit V Pappu","doi":"10.1063/5.0050059","DOIUrl":"10.1063/5.0050059","url":null,"abstract":"<p><p>Cellular matter can be spatially and temporally organized into membraneless biomolecular condensates. The current thinking is that these condensates form and dissolve via phase transitions driven by one or more condensate-specific multivalent macromolecules known as scaffolds. Cells likely regulate condensate formation and dissolution by exerting control over the concentrations of regulatory molecules, which we refer to as ligands. Wyman and Gill introduced the framework of <i>polyphasic linkage</i> to explain how ligands can exert thermodynamic control over phase transitions. This review focuses on describing the concepts of polyphasic linkage and the relevance of such a mechanism for controlling condensate formation and dissolution. We describe how ligand-mediated control over scaffold phase behavior can be quantified experimentally. Further, we build on recent studies to highlight features of ligands that make them suppressors vs drivers of phase separation. Finally, we highlight areas where advances are needed to further understand ligand-mediated control of condensates in complex cellular environments. These advances include understanding the effects of networks of ligands on condensate behavior and how ligands modulate phase transitions controlled by different combinations of homotypic and heterotypic interactions among scaffold macromolecules. Insights gained from the application of polyphasic linkage concepts should be useful for designing novel pharmaceutical ligands to regulate condensates.</p>","PeriodicalId":72405,"journal":{"name":"Biophysics reviews","volume":"2 2","pages":"021302"},"PeriodicalIF":0.0,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8211317/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39134767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhenzhong Yang, Jack Francisco, Alexandra S Reese, David R Spriggs, Hyungsoon Im, Cesar M Castro
{"title":"Addressing cervical cancer screening disparities through advances in artificial intelligence and nanotechnologies for cellular profiling.","authors":"Zhenzhong Yang, Jack Francisco, Alexandra S Reese, David R Spriggs, Hyungsoon Im, Cesar M Castro","doi":"10.1063/5.0043089","DOIUrl":"10.1063/5.0043089","url":null,"abstract":"<p><p>Almost all cases of cervical cancer are caused by the human papilloma virus (HPV). Detection of pre-cancerous cervical changes provides a window of opportunity for cure of an otherwise lethal disease when metastatic. With a greater understanding of the biology and natural course of high-risk HPV infections, screening methods have shifted beyond subjective Pap smears toward more sophisticated and objective tactics. This has led to a substantial growth in the breadth and depth of HPV-based cervical cancer screening tests, especially in developed countries without constrained resources. Many low- and middle-income countries (LMICs) have less access to advanced laboratories and healthcare resources, so new point-of-care (POC) technologies have been developed to provide test results in real time, improve the efficiency of techniques, and increase screening adoption. In this Review, we will discuss how novel decentralized screening technologies and computational strategies improve upon traditional methods and how their realized promise could further democratize cervical cancer screening and promote greater disease prevention.</p>","PeriodicalId":72405,"journal":{"name":"Biophysics reviews","volume":"2 1","pages":"011303"},"PeriodicalIF":0.0,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8015256/pdf/BRIEIM-000002-011303_1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25583191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mechanisms of ligand binding.","authors":"Enrico Di Cera","doi":"10.1063/5.0020997","DOIUrl":"10.1063/5.0020997","url":null,"abstract":"<p><p>Many processes in chemistry and biology involve interactions of a ligand with its molecular target. Interest in the mechanism governing such interactions has dominated theoretical and experimental analysis for over a century. The interpretation of molecular recognition has evolved from a simple rigid body association of the ligand with its target to appreciation of the key role played by conformational transitions. Two conceptually distinct descriptions have had a profound impact on our understanding of mechanisms of ligand binding. The first description, referred to as induced fit, assumes that conformational changes follow the initial binding step to optimize the complex between the ligand and its target. The second description, referred to as conformational selection, assumes that the free target exists in multiple conformations in equilibrium and that the ligand selects the optimal one for binding. Both descriptions can be merged into more complex reaction schemes that better describe the functional repertoire of macromolecular systems. This review deals with basic mechanisms of ligand binding, with special emphasis on induced fit, conformational selection, and their mathematical foundations to provide rigorous context for the analysis and interpretation of experimental data. We show that conformational selection is a surprisingly versatile mechanism that includes induced fit as a mathematical special case and even captures kinetic properties of more complex reaction schemes. These features make conformational selection a dominant mechanism of molecular recognition in biology, consistent with the rich conformational landscape accessible to biological macromolecules being unraveled by structural biology.</p>","PeriodicalId":72405,"journal":{"name":"Biophysics reviews","volume":"1 1","pages":"011303"},"PeriodicalIF":0.0,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7714259/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38707519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}