Biomaterials and biosystems最新文献

筛选
英文 中文
Dental implant prevalence and durability: A concise review of factors influencing success and failure
Biomaterials and biosystems Pub Date : 2025-02-15 DOI: 10.1016/j.bbiosy.2025.100109
Yoshiyasu Takefuji
{"title":"Dental implant prevalence and durability: A concise review of factors influencing success and failure","authors":"Yoshiyasu Takefuji","doi":"10.1016/j.bbiosy.2025.100109","DOIUrl":"10.1016/j.bbiosy.2025.100109","url":null,"abstract":"<div><div>This study aimed to evaluate the prevalence of dental implants and the factors influencing their survival rates, including systemic disorders, medication use, lifestyle habits, and implant design. A literature review revealed that implants with laser-microtextured grooves exhibited lower peri‑implantitis incidence and higher survival rates. Early failure often correlated with smoking, male gender, and younger age, while adjacent teeth faced an increased risk of loss. Personality traits were found to affect implant success in older patients, alongside concerns regarding the durability of titanium implants. The findings stress the necessity of comprehensive patient evaluations and enhanced diagnostic skills for improving dental implant outcomes.</div></div>","PeriodicalId":72379,"journal":{"name":"Biomaterials and biosystems","volume":"17 ","pages":"Article 100109"},"PeriodicalIF":0.0,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143429798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of fully-resorption replacement paste-like organic/inorganic artificial bones compatible with bone remodeling cycles
Biomaterials and biosystems Pub Date : 2025-01-26 DOI: 10.1016/j.bbiosy.2025.100107
Yuki Kamaya , Shiori Kato , Kazuaki Nakano , Masaki Nagaya , Hiroshi Nagashima , Mamoru Aizawa
{"title":"Development of fully-resorption replacement paste-like organic/inorganic artificial bones compatible with bone remodeling cycles","authors":"Yuki Kamaya ,&nbsp;Shiori Kato ,&nbsp;Kazuaki Nakano ,&nbsp;Masaki Nagaya ,&nbsp;Hiroshi Nagashima ,&nbsp;Mamoru Aizawa","doi":"10.1016/j.bbiosy.2025.100107","DOIUrl":"10.1016/j.bbiosy.2025.100107","url":null,"abstract":"<div><div>Calcium-phosphate cement (CPC), commonly used as a bone graft substitute, sets as hydroxyapatite (HAp) and remains in the body for extended periods. To enhance bioresorbabability, we developed a chelate-setting tricalcium β-phosphate (β-TCP) cement using inositol phosphate (IP6) surface modification. By incorporating poly(lactic-co-glycolic acid) (PLGA) particles as a pore-forming agent and calcium sulfate hemihydrate (CSH) to this CPC, we created an organic/inorganic hybrid cement combining bioresorbability with favorable material properties. In this study, varying amounts of PLGA particles were added alongside CSH, and the resulting cement's properties, cytotoxicity, and <em>in vivo</em> response large animals (pigs) were assessed. The cement exhibited a compressive strength of ∼ 30 MPa and set within 15 min, making it suitable for clinical use. Cytotoxicity tests using Transwell® demonstrated cell growth in all cement specimens. In a pig tibia model, the amount of PLGA particle of 5 mass%, 10 mass%, and 20 mass% were tested to optimize material resorption and bone formation, compared with commercial HAp-based CPCs. Histological evaluations showed that higher amount of PLGA particles (10 mass% and 20 mass%) led to increased material resorption but impaired bone formation. The cement containing 5 mass% PLGA particles achieved the best balance, promoting the highest rate of bone formation. Thus, 5 mass% PLGA is the optimal amount for balancing resorption and bone regeneration in β-TCP cement. This formulation is expected to serve as a fully absorbable hybrid paste-type artificial bone supporting bone remodeling cycles.</div></div>","PeriodicalId":72379,"journal":{"name":"Biomaterials and biosystems","volume":"17 ","pages":"Article 100107"},"PeriodicalIF":0.0,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143171576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tissue-engineered fibrillar fibronectin matrices are not only lovely, but also functional for regenerative medicines and in vitro model systems 组织工程纤维连接蛋白基质不仅可爱,而且在再生药物和体外模型系统中也有功能。
Biomaterials and biosystems Pub Date : 2024-12-01 DOI: 10.1016/j.bbiosy.2024.100104
Seungkuk Ahn
{"title":"Tissue-engineered fibrillar fibronectin matrices are not only lovely, but also functional for regenerative medicines and in vitro model systems","authors":"Seungkuk Ahn","doi":"10.1016/j.bbiosy.2024.100104","DOIUrl":"10.1016/j.bbiosy.2024.100104","url":null,"abstract":"<div><div>Fibronectin is an ubiquitous extracellular matrix protein which comprises fibrous three-dimensional microenvironments in native tissues. Although its importance and fibrillogenesis <em>in vivo</em> has been considerably investigated, yet current <em>in vitro</em> tissue engineering platforms for fibrillar fibronectin pose major drawbacks such as low scalability, applicability, and reproducibility. Due to such platform limitations, understanding of spatiotemporal mechanobiology between cells and fibrillar fibronectin matrices largely remains unexplored. This article briefly underlines current tissue-engineering platforms and mechanobiological understanding of fibrillar fibronectin as well as suggests potential directions in future fibronectin researches.</div></div>","PeriodicalId":72379,"journal":{"name":"Biomaterials and biosystems","volume":"16 ","pages":"Article 100104"},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11653108/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142857197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced osteogenic potential of spider silk fibroin-based composite scaffolds incorporating carboxymethyl cellulose for bone tissue engineering 掺入羧甲基纤维素的蛛丝纤维素基复合支架在骨组织工程中的成骨潜力得到增强
Biomaterials and biosystems Pub Date : 2024-11-19 DOI: 10.1016/j.bbiosy.2024.100103
Woong Jin Lee , Kyoungjoo Cho , Dayoon Lee , Seungmin Lee , Hyojae Jeon , Aaron Youngjae Kim , Gyung Whan Kim
{"title":"Enhanced osteogenic potential of spider silk fibroin-based composite scaffolds incorporating carboxymethyl cellulose for bone tissue engineering","authors":"Woong Jin Lee ,&nbsp;Kyoungjoo Cho ,&nbsp;Dayoon Lee ,&nbsp;Seungmin Lee ,&nbsp;Hyojae Jeon ,&nbsp;Aaron Youngjae Kim ,&nbsp;Gyung Whan Kim","doi":"10.1016/j.bbiosy.2024.100103","DOIUrl":"10.1016/j.bbiosy.2024.100103","url":null,"abstract":"<div><div>This study aimed to investigate the characteristics of composite scaffolds that combine fibroin derived from spider silk and carboxymethyl cellulose (CMC) in the field of bone tissue engineering. Fibroin, obtained from spider silk, serves as a valuable biomaterial and constitutes the primary component of fibrous protein-based spider silk threads. To enhance the binding efficiency in bone formation after scaffold implantation, CMC was integrated into fibroin, aiming to improve the injectability properties of the scaffold in bone substitutes. For bone marrow mesenchymal stem cell (BMSC) tissue engineering, BMSCs isolated from mice were seeded onto the scaffold, and the rate of cell proliferation was assessed. The composite scaffold, with the addition of CMC to fibroin, exhibited superior characteristics compared to scaffolds containing only silks, including porous morphology, porosity, surface wettability, water absorption, and thermal properties. Alkaline phosphatase activity in BMSCs was significantly higher in the CMC-containing scaffold compared to the silk-only scaffold, and the CMC-containing scaffold demonstrated increased expression of osteocyte marker genes and proteins. In conclusion, the biocompatibility and hydrophilicity of CMC-containing scaffolds play essential roles in the growth and proliferation of osteocytes. Furthermore, the CMC-containing scaffold design proposed in this study is expected to have a substantial impact on promoting ossification of BMSCs.</div></div>","PeriodicalId":72379,"journal":{"name":"Biomaterials and biosystems","volume":"16 ","pages":"Article 100103"},"PeriodicalIF":0.0,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142704084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In vitro and in vivo assessment of a non-animal sourced chitosan scaffold loaded with xeno-free umbilical cord mesenchymal stromal cells cultured under macromolecular crowding conditions 在大分子拥挤条件下培养的无异种脐带间充质基质细胞负载的非动物来源壳聚糖支架的体外和体内评估
Biomaterials and biosystems Pub Date : 2024-10-10 DOI: 10.1016/j.bbiosy.2024.100102
Alessia Di Nubila , Meletios-Nikolaos Doulgkeroglou , Mehmet Gurdal , Stefanie H. Korntner , Dimitrios I. Zeugolis
{"title":"In vitro and in vivo assessment of a non-animal sourced chitosan scaffold loaded with xeno-free umbilical cord mesenchymal stromal cells cultured under macromolecular crowding conditions","authors":"Alessia Di Nubila ,&nbsp;Meletios-Nikolaos Doulgkeroglou ,&nbsp;Mehmet Gurdal ,&nbsp;Stefanie H. Korntner ,&nbsp;Dimitrios I. Zeugolis","doi":"10.1016/j.bbiosy.2024.100102","DOIUrl":"10.1016/j.bbiosy.2024.100102","url":null,"abstract":"<div><div>There is an increasing demand to not only accelerate the development of advanced therapy tissue engineered medicines, but to also eliminate xenogeneic materials from their development cycle. With these in mind, herein we first assessed the influence of carrageenan as macromolecular crowding agent to enhance and accelerate extracellular matrix deposition in xeno-free human umbilical cord mesenchymal stromal cell cultures and we developed and characterised a non-animal sourced chitosan scaffold. Following appropriate in vitro experimentation, a splinted nude mouse wound healing model was used to assess wound closure and scar size of non-treated control, non-animal sourced chitosan scaffold, non-animal sourced chitosan scaffold loaded with xeno-free human umbilical cord mesenchymal stromal cells and non-animal sourced chitosan scaffold loaded with xeno-free human umbilical cord mesenchymal stromal cells cultured under macromolecular crowding conditions groups. Across all three donors, carrageenan supplementation significantly increased collagen deposition at day 5, day 8 and day 11 without affecting cell morphology, viability, DNA concentration and metabolic activity. Through freeze drying, a non-animal sourced chitosan sponge was developed with appropriate structural and mechanical properties for wound healing applications. In vitro biological analysis made apparent that neither the scaffold nor macromolecular crowding negatively impacted xeno-free human umbilical cord mesenchymal stromal cell metabolic activity and proliferation. In vivo biological analysis revealed no significant differences between the groups in wound closure and scar size, raising question about the suitability of the model. In any case, this work sets the foundations for the development of completely xeno-free tissue engineered medicines.</div></div>","PeriodicalId":72379,"journal":{"name":"Biomaterials and biosystems","volume":"16 ","pages":"Article 100102"},"PeriodicalIF":0.0,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142432374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biomaterials functionalized with magnetic nanoparticles for tissue engineering: Between advantages and challenges 用于组织工程的磁性纳米颗粒功能化生物材料:优势与挑战并存
Biomaterials and biosystems Pub Date : 2024-09-01 DOI: 10.1016/j.bbiosy.2024.100100
V. Goranov
{"title":"Biomaterials functionalized with magnetic nanoparticles for tissue engineering: Between advantages and challenges","authors":"V. Goranov","doi":"10.1016/j.bbiosy.2024.100100","DOIUrl":"10.1016/j.bbiosy.2024.100100","url":null,"abstract":"<div><p>The integration of magnetic nanoparticles (MNPs) into biomaterials offers exciting opportunities for tissue engineering as they enable better control over cell guidance, release of bioactive factors and tissue maturation. Despite their potential, challenges such as the heterogeneity of MNPs, their cytotoxicity and the need for precise control of MNP`s properties hinder their widespread application. Overcoming these challenges will require new interdisciplinary efforts and technological advances, including the development of mathematical tools and additional elaborations to ensure the biocompatibility of MNPs.</p></div>","PeriodicalId":72379,"journal":{"name":"Biomaterials and biosystems","volume":"15 ","pages":"Article 100100"},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666534424000138/pdfft?md5=e8e0a0af2e0a13268dd52d6ff3932c45&pid=1-s2.0-S2666534424000138-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142149551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A phosphate glass reinforced composite acrylamide gradient scaffold for osteochondral interface regeneration 用于骨软骨界面再生的磷酸盐玻璃增强复合丙烯酰胺梯度支架
Biomaterials and biosystems Pub Date : 2024-07-26 DOI: 10.1016/j.bbiosy.2024.100099
Zaid M. Younus , Ifty Ahmed , Paul Roach , Nicholas R. Forsyth
{"title":"A phosphate glass reinforced composite acrylamide gradient scaffold for osteochondral interface regeneration","authors":"Zaid M. Younus ,&nbsp;Ifty Ahmed ,&nbsp;Paul Roach ,&nbsp;Nicholas R. Forsyth","doi":"10.1016/j.bbiosy.2024.100099","DOIUrl":"10.1016/j.bbiosy.2024.100099","url":null,"abstract":"<div><p>The bone-cartilage interface is defined by a unique arrangement of cells and tissue matrix. Injury to the interface can contribute to the development of arthritic joint disease. Attempts to repair osteochondral damage through clinical trials have generated mixed outcomes. Tissue engineering offers the potential of integrated scaffold design with multiregional architecture to assist in tissue regeneration, such as the bone-cartilage interface. Challenges remain in joining distinct materials in a single scaffold mass while maintaining integrity and avoiding delamination. The aim of the current work is to examine the possibility of joining two closely related acrylamide derivatives such as, poly n-isopropyl acrylamide (pNIPAM) and poly n‑tert‑butyl acrylamide (pNTBAM). The target is to produce a single scaffold unit with distinct architectural regions in the favour of regenerating the osteochondral interface. Longitudinal phosphate glass fibres (PGFs) with the formula 50P<sub>2</sub>O<sub>5</sub>.30CaO.20Na<sub>2</sub>O were incorporated to provide additional bioactivity by degradation to release ions such as calcium and phosphate which are considered valuable to assist the mineralization process. Polymers were prepared via atom transfer radical polymerization (ATRP) and solutions cast to ensure the integration of polymers chains. Scaffold was characterized using scanning electron microscope (SEM) and Fourier transform infra-red (FTIR) techniques. The PGF mass degradation pattern was inspected using micro computed tomography (µCT). Biological assessment of primary human osteoblasts (hOBs) and primary human chondrocytes (hCHs) upon scaffolds was performed using alizarin red and colorimetric calcium assay for mineralization assessment; alcian blue staining and dimethyl-methylene blue (DMMB) assay for glycosaminoglycans (GAGs); immunostaining and enzyme-linked immunosorbent assay (ELISA) to detect functional proteins expression by cells such as collagen I, II, and annexin A2. FTIR analysis revealed an intact unit with gradual transformation from pNIPAM to pNTBAM. SEM images showed three distinct architectural regions with mean pore diameter of 54.5 µm (pNIPAM), 16.5 µm (pNTBAM) and 118 µm at the mixed interface. Osteogenic and mineralization potential by cells was observed upon the entire scaffold's regions. Chondrogenic activity was relevant on the pNTBAM side of the scaffold only with minimal evidence in the pNIPAM region. PGFs increased mineralization potential of both hOBs and hCHs, evidenced by elevated collagens I, X, and annexin A2 with reduction of collagen II in PGFs scaffolds. In conclusion, pNIPAM and pNTBAM integration created a multiregional scaffold with distinct architectural regions. Differential chondrogenic, osteogenic, and mineralized cell performance, in addition to the impact of PGF, suggests a potential role for phosphate glass-incorporated, acrylamide-derivative scaffolds in osteochondral interface regeneration.</p></div>","PeriodicalId":72379,"journal":{"name":"Biomaterials and biosystems","volume":"15 ","pages":"Article 100099"},"PeriodicalIF":0.0,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666534424000126/pdfft?md5=013761879f791332fbc8262ad6ff339a&pid=1-s2.0-S2666534424000126-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141840695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Does the extent of bone defects affect the time to reach full weight-bearing after treatment with the Masquelet technique? 骨缺损程度是否会影响马斯奎莱技术治疗后达到完全负重的时间?
Biomaterials and biosystems Pub Date : 2024-07-08 DOI: 10.1016/j.bbiosy.2024.100098
J. Frese , AP Schulz , B. Kowald , U.J. Gerlach , K.H. Frosch , R. Schoop
{"title":"Does the extent of bone defects affect the time to reach full weight-bearing after treatment with the Masquelet technique?","authors":"J. Frese ,&nbsp;AP Schulz ,&nbsp;B. Kowald ,&nbsp;U.J. Gerlach ,&nbsp;K.H. Frosch ,&nbsp;R. Schoop","doi":"10.1016/j.bbiosy.2024.100098","DOIUrl":"10.1016/j.bbiosy.2024.100098","url":null,"abstract":"<div><h3>Methodology</h3><p>In a consecutive retrospective analysis of 190 patients treated with the Masquelet technique at the BG Klinikum Hamburg from January 2012 to January 2022, subgroup analysis for defect-specific features such as the extent and morphology of the defect were recorded, and their influence on the time to reach full weight-bearing of the affected limb was investigated.</p></div><div><h3>Results and conclusion</h3><p>A total of 217 defects were treated in 190 patients using the Masquelet technique. 70 % of all defects were in the tibia, followed by 22 % in the femur and only about 7 % in the upper extremity. The average length of all defects was 58 mm (+/- 31 mm), with the largest defect measuring 180 mm and the smallest measuring 20 mm. 89 % of the patients achieved full weight-bearing at the end of therapy. The average time from initiation of therapy to reaching safe full weight-bearing was 589 days. There was a significant correlation between defect length and time to reach full weight-bearing (<em>p</em> = 0.0134). These results could serve as a basis for creating a score for prognostics and evaluation of bone healing after treatment with the Masquelet technique. Additionally, the results could help guide indications for secondary stabilization using internal fixation.</p></div>","PeriodicalId":72379,"journal":{"name":"Biomaterials and biosystems","volume":"15 ","pages":"Article 100098"},"PeriodicalIF":0.0,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666534424000114/pdfft?md5=f1a313bc2ac6cefc2dc820cd03006840&pid=1-s2.0-S2666534424000114-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141622979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The role of extracellular matrix in angiogenesis: Beyond adhesion and structure 细胞外基质在血管生成中的作用:超越粘附和结构
Biomaterials and biosystems Pub Date : 2024-07-08 DOI: 10.1016/j.bbiosy.2024.100097
Jaxson R. Libby , Haley Royce , Sarah R. Walker , Linqing Li
{"title":"The role of extracellular matrix in angiogenesis: Beyond adhesion and structure","authors":"Jaxson R. Libby ,&nbsp;Haley Royce ,&nbsp;Sarah R. Walker ,&nbsp;Linqing Li","doi":"10.1016/j.bbiosy.2024.100097","DOIUrl":"10.1016/j.bbiosy.2024.100097","url":null,"abstract":"<div><p>While the extracellular matrix (ECM) has long been recognized for its structural contributions, anchoring cells for adhesion, providing mechanical support, and maintaining tissue integrity, recent efforts have elucidated its dynamic, reciprocal, and diverse properties on angiogenesis. The ECM modulates angiogenic signaling and mechanical transduction, influences the extent and degree of receptor activation, controls cellular behaviors, and serves as a reservoir for bioactive macromolecules. Collectively, these factors guide the formation, maturation, and stabilization of a functional vascular network. This review aims to shed light on the versatile roles of the ECM in angiogenesis, transcending its traditional functions as a mere structural material. We will explore its engagement and synergy in signaling modulation, interactions with various angiogenic factors, and highlight its importance in both health and disease. By capturing the essence of the ECM's diverse functionalities, we highlight the significance in the broader context of vascular biology, enabling the design of novel biomaterials to engineer vascularized tissues and their potential therapeutic implications.</p></div>","PeriodicalId":72379,"journal":{"name":"Biomaterials and biosystems","volume":"15 ","pages":"Article 100097"},"PeriodicalIF":0.0,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666534424000102/pdfft?md5=b40b78d2afdf15d3aabdb4d9e7113009&pid=1-s2.0-S2666534424000102-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141696440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Discovering the nucleus in a world of biomaterials 在生物材料世界中发现细胞核
Biomaterials and biosystems Pub Date : 2024-06-01 DOI: 10.1016/j.bbiosy.2024.100096
Steven Vermeulen , Elizabeth Rosado Balmayor
{"title":"Discovering the nucleus in a world of biomaterials","authors":"Steven Vermeulen ,&nbsp;Elizabeth Rosado Balmayor","doi":"10.1016/j.bbiosy.2024.100096","DOIUrl":"https://doi.org/10.1016/j.bbiosy.2024.100096","url":null,"abstract":"<div><p>The nucleus serves as the central hub for cellular activity, driving cell identity and behavior. Despite its crucial role, understanding how biomaterials influence the nucleus remains an underexplored area of research. In our opinion, this is an overlooked opportunity, particularly in regenerative medicine — a field where cellular control is not just beneficial, but essential. As such, we emphasize the need to recognize nuclear characteristics as a key metric for evaluating material functionality. In this leading opinion article, we discuss how state-of-the-art technologies can help reveal biomaterial-driven nuclear alterations, offering crucial insights that will advance the field of regenerative medicine.</p></div>","PeriodicalId":72379,"journal":{"name":"Biomaterials and biosystems","volume":"14 ","pages":"Article 100096"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666534424000096/pdfft?md5=6e94ca40eb3a32367ce139999d4386a9&pid=1-s2.0-S2666534424000096-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141323308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信