Advanced Materials & Technologies最新文献

筛选
英文 中文
Inkjet‐Printed Self‐Hosted TADF Polymer Light‐Emitting Diodes 喷墨印刷自宿主TADF聚合物发光二极管
Advanced Materials & Technologies Pub Date : 2022-07-19 DOI: 10.1002/admt.202200648
Cameron M. Cole, Susanna V. Kunz, P. Shaw, C. S. K. Ranasinghe, Thomas Baumann, J. Blinco, P. Sonar, C. Barner‐Kowollik, S. Yambem
{"title":"Inkjet‐Printed Self‐Hosted TADF Polymer Light‐Emitting Diodes","authors":"Cameron M. Cole, Susanna V. Kunz, P. Shaw, C. S. K. Ranasinghe, Thomas Baumann, J. Blinco, P. Sonar, C. Barner‐Kowollik, S. Yambem","doi":"10.1002/admt.202200648","DOIUrl":"https://doi.org/10.1002/admt.202200648","url":null,"abstract":"Thermally activated delayed fluorescent (TADF) materials are extensively investigated as organic light‐emitting diodes (OLEDs) with TADF emitting layers demonstrating high efficiency without the use of heavy metal complexes. Therefore, solution‐processable and printable TADF emitters are highly desirable, moving away from expensive vacuum deposition techniques. In addition, using emissive materials not requiring an external host simplifies the fabrication process significantly. Herein, OLEDs using a solution‐processable TADF polymer that do not need an external host are introduced. The non‐conjugated TADF polymer features a TADF emitter (4‐(9H‐carbazol‐9‐yl)‐2‐(3′‐hydroxy‐[1,1′‐biphenyl]‐3‐yl)‐isoindoline‐1,3‐dione) as a side chain, as well as a hole‐transporting side chain and an electron‐transporting side chain on an inactive polymer backbone. All organic layers of the OLEDs are fabricated using solution processing methods. The OLEDs with inkjet‐printed emissive layers have comparable maximum current and external quantum efficiency as their spin‐coated counterparts, exceeding luminance of 2000 cd m−2. The herein‐explored strategy is a viable route toward self‐hosted printable TADF OLEDs.","PeriodicalId":7200,"journal":{"name":"Advanced Materials & Technologies","volume":"49 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88709035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Measurement of Parachute Canopy Textile Deformation Using Mechanically Invisible Stretchable Lightguides 利用机械不可见可拉伸光导测量伞篷织物变形
Advanced Materials & Technologies Pub Date : 2022-07-17 DOI: 10.1002/admt.202200437
J. Jo, Artemis Xu, Anand Kumar Mishra, Hedan Bai, Armen Derkevorkian, J. Rabinovitch, Huiju Park, R. Shepherd
{"title":"Measurement of Parachute Canopy Textile Deformation Using Mechanically Invisible Stretchable Lightguides","authors":"J. Jo, Artemis Xu, Anand Kumar Mishra, Hedan Bai, Armen Derkevorkian, J. Rabinovitch, Huiju Park, R. Shepherd","doi":"10.1002/admt.202200437","DOIUrl":"https://doi.org/10.1002/admt.202200437","url":null,"abstract":"Conventional strain gauges are not designed for accurate measurement over the large range of deformations possible in compliant textiles. The thin, lightweight, and flexible nature of textiles also makes it challenging to attach strain gauges in a way that does not affect the mechanical properties. In this manuscript, soft, highly extensible fibers that propagate light (i.e., stretchable lightguides) are stitched as a strain gauge to map the deformation of a nylon parachute textile under tension. When under load, these fiber optic strain gauges propagate less light, and this strain‐induced light modulation is used to accurately (absolute error≈2.93%; Std. Dev.: 3.02%) measure strain in the <30% range before these textiles fail. This system has directionality; strain in parallel to the sensor results in little light attenuation while perpendicular loading shows high sensitivity (Gauge factor⊥≈24.8 and Gauge factor||≈0.05 at the first 1% strain). Structural and optical simulations are coupled to demonstrate that load transfer on the fiber optic by the stitchwork is the dominating cause of signal modulation. To further validate the hypotheses, digital image correlation was used under dynamic loading conditions to show that these sensors do not significantly affect the mechanical properties.","PeriodicalId":7200,"journal":{"name":"Advanced Materials & Technologies","volume":"34 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87355942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Photolithographic High‐Conductivity Transparent Conformal rGO/PEDOT:PSS Electrodes for Flexible Skin‐Like All Solution‐Processed Organic Transistors 光刻高导电性透明共形rGO/PEDOT:PSS电极,用于柔性皮肤样所有溶液处理有机晶体管
Advanced Materials & Technologies Pub Date : 2022-07-15 DOI: 10.1002/admt.202200660
Xue Wang, Pengfei Zhao, Y. Tong, Shanlei Guo, Guodong Zhao, Mingxin Zhang, Hongyan Yu, Xiaoli Zhao, Q. Tang, Yichun Liu
{"title":"Photolithographic High‐Conductivity Transparent Conformal rGO/PEDOT:PSS Electrodes for Flexible Skin‐Like All Solution‐Processed Organic Transistors","authors":"Xue Wang, Pengfei Zhao, Y. Tong, Shanlei Guo, Guodong Zhao, Mingxin Zhang, Hongyan Yu, Xiaoli Zhao, Q. Tang, Yichun Liu","doi":"10.1002/admt.202200660","DOIUrl":"https://doi.org/10.1002/admt.202200660","url":null,"abstract":"Reduced graphene oxide (rGO) electrodes are known to exhibit high transparency, excellent chemical stability, low‐cost solution processability, and good compatibility for use in solution‐processed organic transistors, but they face fundamental challenges in conductivity and conformability for skin‐like electronics. Here, by inserting a poly(3,4‐ethylenedioxythiophene):poly‐(styrenesulfonate) (PEDOT:PSS) layer, the photolithographic conformal rGO/PEDOT:PSS electrodes with conductivity as high as 2000 S cm−1 can be achieved. Simultaneously, the rGO/PEDOT:PSS hybrid electrodes exhibit high precision down to 1 µm, high transparency of >90% over the visible spectra (400–700 nm), and imperceptible adherence onto damselfly wing without affecting flying. The resulting all‐solution processed organic transistor array presents the enhanced modulation effect of the gate voltage on current, 5.5‐fold increased mobility, and the on‐state current increased by one order of magnitude compared with the neat rGO electrode device, and shows the good adherence to deforming human skins and stable operation on the 10 mm spherical surface with mobility as high as 2.33 cm2 V−1 s−1. The strategy provides a high‐precision, high‐integration, flexible pattern‐designable, and scalable route to produce the high‐conductive transparent conformal rGO/PEDOT:PSS hybrid electrodes for flexible skin‐like all solution‐processed organic transistor array, showing the outstanding potential for future low‐cost soft electronics.","PeriodicalId":7200,"journal":{"name":"Advanced Materials & Technologies","volume":"81 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87151855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
A Comparative Study of Silver Microflakes in Digitally Printable Liquid Metal Embedded Elastomer Inks for Stretchable Electronics 可拉伸电子用可数字印刷液态金属嵌入弹性体油墨中银微片的比较研究
Advanced Materials & Technologies Pub Date : 2022-07-15 DOI: 10.1002/admt.202200534
Wu Zu, Yunsik Ohm, M. Carneiro, Michael R Vinciguerra, M. Tavakoli, C. Majidi
{"title":"A Comparative Study of Silver Microflakes in Digitally Printable Liquid Metal Embedded Elastomer Inks for Stretchable Electronics","authors":"Wu Zu, Yunsik Ohm, M. Carneiro, Michael R Vinciguerra, M. Tavakoli, C. Majidi","doi":"10.1002/admt.202200534","DOIUrl":"https://doi.org/10.1002/admt.202200534","url":null,"abstract":"Printed soft conductive materials for stretchable electronics should have low electrical resistivity, high strain limit, and stable electrical properties when stretched. Previously, it has been shown that a bi‐phasic ink composed of silver (Ag) microflakes, eutectic gallium−indium (EGaIn) alloy, and styrene isoprene (SIS) block copolymer is a promising formulation for printed soft electronics and has the potential to satisfy the necessary criteria. In this study, further improvements to the ink formulation are explored, with a focus on how the choice of Ag microflakes affects the electrical and electromechanical properties of the composite. By using specific Ag microflakes, AgInGa‐SIS inks that have conductivity as high as 6.38 × 105 S m−1 and a strain limit of over 1000%, with low electromechanical coupling can be synthesized. More broadly, when comparing the composite with different silver flakes, there is a 176% relative difference in conductivity, >600% difference in strain limit, and 277% relative difference in electromechanical coupling. To demonstrate the applicability of these inks for various use cases such as wearable bioelectronics, interconnects are printed for connecting electronic breakout boards with microcontrollers that provide a stable electrical connection when stretched, and the interconnects and electrodes of a wearable electrocardiography system that monitors the heart pulses in real‐time.","PeriodicalId":7200,"journal":{"name":"Advanced Materials & Technologies","volume":"os-18 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87199094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 15
Printed GaAs Microstructures‐Based Flexible High‐Performance Broadband Photodetectors 基于印刷砷化镓微结构的柔性高性能宽带光电探测器
Advanced Materials & Technologies Pub Date : 2022-07-13 DOI: 10.1002/admt.202200772
Ayoub Zumeit, A. Dahiya, Adamos Christou, Rudra Mukherjee, R. Dahiya
{"title":"Printed GaAs Microstructures‐Based Flexible High‐Performance Broadband Photodetectors","authors":"Ayoub Zumeit, A. Dahiya, Adamos Christou, Rudra Mukherjee, R. Dahiya","doi":"10.1002/admt.202200772","DOIUrl":"https://doi.org/10.1002/admt.202200772","url":null,"abstract":"Nano/microstructures of compound semiconductors such as gallium arsenide (GaAs) demonstrate enormous potential for advanced photonic technologies as they provide realistic means for miniaturization of optoelectronic devices that feature better performance and low power consumption. However, intimately integrating them onto flexible substrates is challenging and restricts their use in the next generation of applications such as wearables and soft robotics. Herein, printed arrays of well‐defined and laterally aligned semi‐insulating (undoped) and doped GaAs microstructures are presented to develop high‐performance flexible broadband photodetectors. The direct roll transfer printed GaAs microstructures‐based photodetectors exhibit excellent performance under ultraviolet and near‐infrared illumination, including ultrafast response (2.5 ms) and recovery (8 ms) times, high responsivity (>104 AW–1), detectivity (>1014 Jones), external quantum efficiency (>106), and photoconductive gain (>104) at low operating voltage of 1 V. The achieved performance is among the best reported for broadband photodetectors but with an added benefit of the developed devices having a flexible form factor. Further, the photodetectors show stable performance under mechanical bending (500 cycles) and twisting loading. The developed materials and manufacturing route can enable high‐speed communications and computation via high‐performance flexible electronics and optoelectronics and transform numerous emerging applications such as wearable systems and internet of things.","PeriodicalId":7200,"journal":{"name":"Advanced Materials & Technologies","volume":"72 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80068991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
A Versatile Approach for Preparing Shape‐Morphing Bilayer Films by Simply Adhering Two SEBS/Paraffin Films with Different Deformability and Melting Temperatures 通过简单粘接具有不同变形能力和熔化温度的两种SEBS/石蜡薄膜制备形状变形双层膜的通用方法
Advanced Materials & Technologies Pub Date : 2022-07-12 DOI: 10.1002/admt.202200339
Sijia Ren, Jiachun Feng
{"title":"A Versatile Approach for Preparing Shape‐Morphing Bilayer Films by Simply Adhering Two SEBS/Paraffin Films with Different Deformability and Melting Temperatures","authors":"Sijia Ren, Jiachun Feng","doi":"10.1002/admt.202200339","DOIUrl":"https://doi.org/10.1002/admt.202200339","url":null,"abstract":"Shape‐morphing materials that can exhibit various shape deformations are highly desirable. In this work, shape‐morphing materials with diverse deformation modes are prepared via a facile approach of constructing bilayer structures of SEBS/paraffin blends with different melting temperatures. The bilayer films are prepared using a simple solvent‐coating adhesion method, either by adhering two single‐layers together and stretching or by adhering two pre‐stretched single‐layers. These bilayer films show strong interfacial adhesion due to the similar chemical composition of the two layers. By adjusting the programming method, stretching strain, and thickness ratio, the shape deformation behaviors of the resultant bilayer films can be flexibly tuned. To demonstrate the wide applicability of this approach, several 2D sheets with hinge structures as well as a smart dressing are prepared, in which the former can be transformed into 3D configurations and the latter can automatically fit to the human body and peel off. Owing to the advantages of low cost, easy and large‐scale preparation, recyclability, and high designability, the approach for preparing shape‐morphing bilayer films proposed by this work is versatile and the obtained bilayer films have the potential to satisfy the demands of divergent application fields.","PeriodicalId":7200,"journal":{"name":"Advanced Materials & Technologies","volume":"152 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86784124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A Stacked p‐Type Low‐Temperature Polycrystalline Silicon Thin‐Film Transistor for Future Display Applications 用于未来显示应用的堆叠p型低温多晶硅薄膜晶体管
Advanced Materials & Technologies Pub Date : 2022-07-07 DOI: 10.1002/admt.202200394
Yu‐Xuan Wang, Mao‐Chou Tai, T. Chang, Chia-Chuan Wu, Yu-Zhe Zheng, Yu-Fa Tu, Kuan-Ju Zhou, Yu-Shan Shih, Yu-An Chen, Jen-Wei Huang, S. Sze
{"title":"A Stacked p‐Type Low‐Temperature Polycrystalline Silicon Thin‐Film Transistor for Future Display Applications","authors":"Yu‐Xuan Wang, Mao‐Chou Tai, T. Chang, Chia-Chuan Wu, Yu-Zhe Zheng, Yu-Fa Tu, Kuan-Ju Zhou, Yu-Shan Shih, Yu-An Chen, Jen-Wei Huang, S. Sze","doi":"10.1002/admt.202200394","DOIUrl":"https://doi.org/10.1002/admt.202200394","url":null,"abstract":"In this study, a novel structural design of the p‐type low‐temperature polycrystalline silicon thin‐film transistors (p‐type LTPS TFTs) applied to the pixel structure of displays is proposed. Compared to the conventional pixel structure of displays, the proposed architecture can achieve the aperture ratio improvement by stacking the switch thin‐film transistor and the storage capacitor in a pixel region to enlarge the active space. Therefore, the demands of high‐resolution characteristics, such as a high aperture ratio, and high pixel densities for high‐end displays or novel technologies, can be satisfied by the adoption of the proposed design concept. Furthermore, the discussion of experimental and simulated results in terms of device physics of the transistor indicates that proposed TFTs possess higher performance and reliability properties. By modulating the geometry of the drain‐connected bottom metal in stacked TFTs, output characteristics and hot carrier phenomenon in devices can be further improved. Time‐dependent transfer characteristics, extracted electrical parameters, and numerical simulation results are performed to support our design.","PeriodicalId":7200,"journal":{"name":"Advanced Materials & Technologies","volume":"18 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81889124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Designable Multiple Structural Colors Using Alkaline Periodate Oxidated Cellulose Nanocrystals and Gold Nanorods 可设计的多种结构颜色使用碱性高碘酸盐氧化纤维素纳米晶体和金纳米棒
Advanced Materials & Technologies Pub Date : 2022-07-06 DOI: 10.1002/admt.202200615
Dan Xu, Qun Song, Chenchen Wu, Kai Zhang
{"title":"Designable Multiple Structural Colors Using Alkaline Periodate Oxidated Cellulose Nanocrystals and Gold Nanorods","authors":"Dan Xu, Qun Song, Chenchen Wu, Kai Zhang","doi":"10.1002/admt.202200615","DOIUrl":"https://doi.org/10.1002/admt.202200615","url":null,"abstract":"Structural colors originating from ordered microstructures are popularly applied due to their versatile intrinsic advantages compared to dyes/pigments. Since the emergence of cellulose nanocrystals (CNCs) via alkaline periodate oxidation (PO‐CNCs) in 2019, here, their great potential as one‐dimensional nanomaterials for tunable optical materials combining with gold nanorods (GNRs) for the first time is demonstrated. The hybrid nanocomposite films with embedded and well‐organized PO‐CNCs and/or GNRs were prepared from hydrogel precursors after uniaxial stretching and air drying. In comparison with the solitary films containing pristine PO‐CNCs or GNRs, the birefringence of PO‐CNCs and surface plasmon resonance of GNRs synergistically expands the resulting color space. Based on their contributions, the solitary films containing only PO‐CNCs or GNRs can be stacked for widely spanning structural colors, such as red, green, and blue colors. Moreover, the relative angle between the stacked films can also be varied to manipulate the structural colors, providing a flexible method to construct designable optical materials. In brief, this study provides a general strategy for combining PO‐CNCs and GNRs into a novel series of nanocomposite materials and demonstrates their promising application potential in optics.","PeriodicalId":7200,"journal":{"name":"Advanced Materials & Technologies","volume":"20 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78821763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Intercalation of Small Organic Molecules into Ti3C2Tx MXene Cathodes for Flexible High‐Volume‐Capacitance Zn‐Ion Microsupercapacitor 小有机分子嵌入Ti3C2Tx MXene阴极用于柔性高体积电容Zn离子微型超级电容器
Advanced Materials & Technologies Pub Date : 2022-07-06 DOI: 10.1002/admt.202200158
Weijia Liu, La Li, Chuqiao Hu, Di Chen, G. Shen
{"title":"Intercalation of Small Organic Molecules into Ti3C2Tx MXene Cathodes for Flexible High‐Volume‐Capacitance Zn‐Ion Microsupercapacitor","authors":"Weijia Liu, La Li, Chuqiao Hu, Di Chen, G. Shen","doi":"10.1002/admt.202200158","DOIUrl":"https://doi.org/10.1002/admt.202200158","url":null,"abstract":"The delamination of 2D Ti3C2Tx MXene endows the injection of various ions and small organic molecules into its layers, thus leading to a tunable distance between layers and adjustable electrochemical properties. A suitable selection of intercalators needs to be considered according to the relevant metal‐ion‐based energy storage device because of the different radii of metal ions such as Li+, Na+, Mg2+ Zn2+, etc. Herein, the intercalation of N,N‐dimethylacetamide (DMAC), acetonitrile (ACN), dimethyl sulfoxide (DMSO), LiCl (H2O) into Ti3C2Tx cathodes and their electrochemical performance comparisons by fabricating Zn‐ion microsupercapacitors (MSCs) is reported. Studies found that an increased calculated interlayer space of 3.42, 7.47, 7.79, 8.3 Å is obtained for the H2O, DMSO, ACN, DMAC intercalated Ti3C2Tx cathodes, and a decreased calculated binding energy of −0.03, −0.78, −1.91, and −3.06 eV is obtained for the Ti3C2Tx‐H2O, Ti3C2Tx‐DMSO, Ti3C2Tx‐ACN, and Ti3C2Tx‐DMAC, respectively. The highest interlayer space, lowest binding energy, and amide groups make the DMAC intercalated Ti3C2Tx‐based MSC exhibit volumetric capacitance of 1873 F cm−3 at a scan rate of 5 mV s−1, much higher than 1103 F cm−3 for Ti3C2Tx‐H2O, 1313 F cm−3 for Ti3C2Tx‐ACN, 544 F cm−3 for Ti3C2Tx‐DMSO. The superior flexibility that results in invariable capacitance under 5000 bending cycles, together with the lighting test of the fabricated MSC, demonstrates its application in the wearable integrated system.","PeriodicalId":7200,"journal":{"name":"Advanced Materials & Technologies","volume":"7 3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78026701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Dual‐Mode Switching E‐Paper by Negative Electrorheological Fluid with Reversible Silica Networks 具有可逆硅网络的负电流变流体双模开关纸
Advanced Materials & Technologies Pub Date : 2022-07-03 DOI: 10.1002/admt.202200371
Mingyang Yang, Guangyou Liu, Z. Zeng, Shuhao Zhang, Jie Liu, Zong Qin, Zhihe Chen, Bo‐Ru Yang
{"title":"Dual‐Mode Switching E‐Paper by Negative Electrorheological Fluid with Reversible Silica Networks","authors":"Mingyang Yang, Guangyou Liu, Z. Zeng, Shuhao Zhang, Jie Liu, Zong Qin, Zhihe Chen, Bo‐Ru Yang","doi":"10.1002/admt.202200371","DOIUrl":"https://doi.org/10.1002/admt.202200371","url":null,"abstract":"Human–machine interaction will be revolutionarily different in the future Internet of Things (IoT) environments. Many displays will be adopted onto electronic devices to enhance human–device communication, even under a very bright sunlight ambience. Thus, power consumption and sunlight visibility are important attributes for this application. Electrophoretic displays (EPDs) have the inherent advantages of ultra‐low power consumption and high sunlight visibility, which are perfectly suitable for IoT applications. The low power consumption resulted from the balance of viscosity, gravity, and other complicated forces involved in the electrophoretic dispersion. This force balance is generally termed “bistability,” meaning the particle‐packing can be stable without external power at black and white image states. However, good bistability implies a slow image updating rate, significantly degrades users’ experience. In this work, a 3D network structure that undergoes disruption and reorganization with the particles’ movement is utilized in the electrophoretic ink dispersion. Dynamic viscosity modulation enables the bistable and fast‐response dual‐working modes. The newly developed design can increase the response speed of EPDs by a factor of 2.38, simultaneously maintaining the bistability. The electronic ink with this reversible network provides a promising solution for the future video‐rate e‐paper displays.","PeriodicalId":7200,"journal":{"name":"Advanced Materials & Technologies","volume":"68 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86437316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信