Intercalation of Small Organic Molecules into Ti3C2Tx MXene Cathodes for Flexible High‐Volume‐Capacitance Zn‐Ion Microsupercapacitor

Weijia Liu, La Li, Chuqiao Hu, Di Chen, G. Shen
{"title":"Intercalation of Small Organic Molecules into Ti3C2Tx MXene Cathodes for Flexible High‐Volume‐Capacitance Zn‐Ion Microsupercapacitor","authors":"Weijia Liu, La Li, Chuqiao Hu, Di Chen, G. Shen","doi":"10.1002/admt.202200158","DOIUrl":null,"url":null,"abstract":"The delamination of 2D Ti3C2Tx MXene endows the injection of various ions and small organic molecules into its layers, thus leading to a tunable distance between layers and adjustable electrochemical properties. A suitable selection of intercalators needs to be considered according to the relevant metal‐ion‐based energy storage device because of the different radii of metal ions such as Li+, Na+, Mg2+ Zn2+, etc. Herein, the intercalation of N,N‐dimethylacetamide (DMAC), acetonitrile (ACN), dimethyl sulfoxide (DMSO), LiCl (H2O) into Ti3C2Tx cathodes and their electrochemical performance comparisons by fabricating Zn‐ion microsupercapacitors (MSCs) is reported. Studies found that an increased calculated interlayer space of 3.42, 7.47, 7.79, 8.3 Å is obtained for the H2O, DMSO, ACN, DMAC intercalated Ti3C2Tx cathodes, and a decreased calculated binding energy of −0.03, −0.78, −1.91, and −3.06 eV is obtained for the Ti3C2Tx‐H2O, Ti3C2Tx‐DMSO, Ti3C2Tx‐ACN, and Ti3C2Tx‐DMAC, respectively. The highest interlayer space, lowest binding energy, and amide groups make the DMAC intercalated Ti3C2Tx‐based MSC exhibit volumetric capacitance of 1873 F cm−3 at a scan rate of 5 mV s−1, much higher than 1103 F cm−3 for Ti3C2Tx‐H2O, 1313 F cm−3 for Ti3C2Tx‐ACN, 544 F cm−3 for Ti3C2Tx‐DMSO. The superior flexibility that results in invariable capacitance under 5000 bending cycles, together with the lighting test of the fabricated MSC, demonstrates its application in the wearable integrated system.","PeriodicalId":7200,"journal":{"name":"Advanced Materials & Technologies","volume":"7 3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials & Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/admt.202200158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

The delamination of 2D Ti3C2Tx MXene endows the injection of various ions and small organic molecules into its layers, thus leading to a tunable distance between layers and adjustable electrochemical properties. A suitable selection of intercalators needs to be considered according to the relevant metal‐ion‐based energy storage device because of the different radii of metal ions such as Li+, Na+, Mg2+ Zn2+, etc. Herein, the intercalation of N,N‐dimethylacetamide (DMAC), acetonitrile (ACN), dimethyl sulfoxide (DMSO), LiCl (H2O) into Ti3C2Tx cathodes and their electrochemical performance comparisons by fabricating Zn‐ion microsupercapacitors (MSCs) is reported. Studies found that an increased calculated interlayer space of 3.42, 7.47, 7.79, 8.3 Å is obtained for the H2O, DMSO, ACN, DMAC intercalated Ti3C2Tx cathodes, and a decreased calculated binding energy of −0.03, −0.78, −1.91, and −3.06 eV is obtained for the Ti3C2Tx‐H2O, Ti3C2Tx‐DMSO, Ti3C2Tx‐ACN, and Ti3C2Tx‐DMAC, respectively. The highest interlayer space, lowest binding energy, and amide groups make the DMAC intercalated Ti3C2Tx‐based MSC exhibit volumetric capacitance of 1873 F cm−3 at a scan rate of 5 mV s−1, much higher than 1103 F cm−3 for Ti3C2Tx‐H2O, 1313 F cm−3 for Ti3C2Tx‐ACN, 544 F cm−3 for Ti3C2Tx‐DMSO. The superior flexibility that results in invariable capacitance under 5000 bending cycles, together with the lighting test of the fabricated MSC, demonstrates its application in the wearable integrated system.
小有机分子嵌入Ti3C2Tx MXene阴极用于柔性高体积电容Zn离子微型超级电容器
二维Ti3C2Tx MXene的分层使各种离子和小有机分子注入其层中,从而导致层间距离可调,电化学性能可调。由于Li+、Na+、Mg2+ Zn2+等金属离子的半径不同,需要根据相应的金属离子基储能装置考虑合适的插层剂选择。本文报道了N,N -二甲基乙酰胺(DMAC),乙腈(ACN),二甲亚砜(DMSO), LiCl (H2O)嵌入Ti3C2Tx阴极,并通过制备锌离子微超级电容器(MSCs)对其电化学性能进行了比较。研究发现,H2O、DMSO、ACN、DMAC插层Ti3C2Tx阴极的计算层间空间增加了3.42、7.47、7.79、8.3 Å,而Ti3C2Tx‐H2O、Ti3C2Tx‐DMSO、Ti3C2Tx‐ACN和Ti3C2Tx‐DMAC的计算结合能分别降低了- 0.03、- 0.78、- 1.91和- 3.06 eV。最大的层间空间、最低的结合能和酰胺基团使得DMAC嵌入Ti3C2Tx - based MSC在5 mV s - 1扫描速率下的体积电容为1873 F cm - 3,远高于Ti3C2Tx - H2O的1103 F cm - 3, Ti3C2Tx - ACN的1313 F cm - 3, Ti3C2Tx - DMSO的544 F cm - 3。优越的柔韧性使其在5000次弯曲循环下保持不变的电容,并通过制造的MSC的照明测试,证明了其在可穿戴集成系统中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信