癌症耐药(英文)最新文献

筛选
英文 中文
Mechanisms and clinical implications in renal carcinoma resistance: narrative review of immune checkpoint inhibitors. 肾癌耐药的机制和临床意义:免疫检查点抑制剂的叙述性回顾。
癌症耐药(英文) Pub Date : 2023-01-01 DOI: 10.20517/cdr.2023.02
Sunil Samnani, Faraz Sachedina, Mehul Gupta, Edward Guo, Vishal Navani
{"title":"Mechanisms and clinical implications in renal carcinoma resistance: narrative review of immune checkpoint inhibitors.","authors":"Sunil Samnani,&nbsp;Faraz Sachedina,&nbsp;Mehul Gupta,&nbsp;Edward Guo,&nbsp;Vishal Navani","doi":"10.20517/cdr.2023.02","DOIUrl":"https://doi.org/10.20517/cdr.2023.02","url":null,"abstract":"<p><p>Clear cell renal cell carcinoma (ccRCC) is the most common histological subtype of renal cell carcinoma. The prognosis for patients with ccRCC has improved over recent years with the use of combination therapies with an anti-programmed death-1 (PD-1) backbone. This has enhanced the quality of life and life expectancy of patients with this disease. Unfortunately, not all patients benefit; eventually, most patients will develop resistance to therapy and progress. Recent molecular, biochemical, and immunological research has extensively researched anti-angiogenic and immune-based treatment resistance mechanisms. This analysis offers an overview of the principles underpinning the resistance pathways related to immune checkpoint inhibitors (ICIs). Additionally, novel approaches to overcome resistance that may be considered for the trial context are discussed.</p>","PeriodicalId":70759,"journal":{"name":"癌症耐药(英文)","volume":"6 2","pages":"416-429"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10344724/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9828954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Concomitant medications and circulating tumor cells: friends or foes? 伴随用药与循环肿瘤细胞:是友是敌?
癌症耐药(英文) Pub Date : 2023-01-01 DOI: 10.20517/cdr.2022.68
Serena Di Cosimo, Vera Cappelletti
{"title":"Concomitant medications and circulating tumor cells: friends or foes?","authors":"Serena Di Cosimo,&nbsp;Vera Cappelletti","doi":"10.20517/cdr.2022.68","DOIUrl":"https://doi.org/10.20517/cdr.2022.68","url":null,"abstract":"<p><p>The use of concomitant medications by patients with cancer is observed almost globally; however, little attention has been paid to this topic in the medical literature. Most clinical studies do not describe the type and duration of drugs used at the time of inclusion and during treatment or how these drugs may affect the experimental and/or standard therapy. Even less information has been published on the potential interaction between concomitant medications and tumor biomarkers. However, we do know that concomitant drugs can complicate cancer clinical trials and biomarker development, thus contributing to their interaction, leading to side effects, and resulting in suboptimal adherence to anticancer treatment. On the basis of these premises and moving from the study by Jurisova <i>et al.</i>, which reported the effect of commonly used drugs on the prognosis of women with breast cancer and the detection of circulating tumor cells (CTCs), we comment on the role of CTCs as an emerging diagnostic and prognostic tool for breast cancer. We also report the known and hypothesized mechanisms of CTC interplay with other tumor and blood components, possibly modulated by widespread drugs, including over-the-counter compounds, and discuss the possible implications of commonly used concomitant medications on CTC detection and clearance. After considering all these points, it is conceivable that concomitant drugs are not necessarily a problem, but on the contrary, their virtuous mechanisms can be exploited to reduce tumor spread and enhance the effect of anticancer therapies.</p>","PeriodicalId":70759,"journal":{"name":"癌症耐药(英文)","volume":"6 1","pages":"30-34"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10099593/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9310602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nano-TRAIL: a promising path to cancer therapy. 纳米trail:一种有前途的癌症治疗途径。
癌症耐药(英文) Pub Date : 2023-01-01 DOI: 10.20517/cdr.2022.82
Siri Chandana Gampa, Sireesha V Garimella, SanthiLatha Pandrangi
{"title":"Nano-TRAIL: a promising path to cancer therapy.","authors":"Siri Chandana Gampa,&nbsp;Sireesha V Garimella,&nbsp;SanthiLatha Pandrangi","doi":"10.20517/cdr.2022.82","DOIUrl":"https://doi.org/10.20517/cdr.2022.82","url":null,"abstract":"<p><p>Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand, also called apo-2 ligand (TRAIL/Apo-2L), is a cytokine that triggers apoptosis by binding to TRAIL-R1 (DR4) and TRAIL-R2 (DR5) death receptors. Apoptosis occurs through either the extrinsic or intrinsic pathway. The administration of recombinant human TRAIL (rhTRAIL) or TRAIL-receptor (TRAIL-R) agonists promotes apoptosis preferentially in cancerous cells over normal cells <i>in vitro</i>; this phenomenon has also been observed in clinical studies. The limited efficacy of rhTRAIL in clinical trials could be attributed to drug resistance, short half-life, targeted delivery issues, and off-target toxicities. Nanoparticles are excellent drug and gene delivery systems characterized by improved permeability and retention, increased stability and biocompatibility, and precision targeting. In this review, we discuss resistance mechanisms to TRAIL and methods to overcome TRAIL resistance by using nanoparticle-based formulations developed for the delivery of TRAIL peptides, TRAIL-R agonists, and TRAIL genes to cancer cells. We also discuss combinatorial approaches of chemotherapeutic drugs with TRAIL. These studies demonstrate TRAIL's potential as an anticancer agent.</p>","PeriodicalId":70759,"journal":{"name":"癌症耐药(英文)","volume":"6 1","pages":"78-102"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10099604/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10298664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
The role of antiangiogenic monoclonal antibodies combined to EGFR-TKIs in the treatment of advanced non-small cell lung cancer with activating EGFR mutations: acquired resistance mechanisms and strategies to overcome them. 抗血管生成单克隆抗体联合表皮生长因子受体-TKIs在治疗表皮生长因子受体活化突变的晚期非小细胞肺癌中的作用:获得性耐药机制及克服策略。
IF 4.6
癌症耐药(英文) Pub Date : 2022-11-02 eCollection Date: 2022-01-01 DOI: 10.20517/cdr.2022.77
Danilo Rocco, Luigi Della Gravara, Giovanni Palazzolo, Cesare Gridelli
{"title":"The role of antiangiogenic monoclonal antibodies combined to EGFR-TKIs in the treatment of advanced non-small cell lung cancer with activating EGFR mutations: acquired resistance mechanisms and strategies to overcome them.","authors":"Danilo Rocco, Luigi Della Gravara, Giovanni Palazzolo, Cesare Gridelli","doi":"10.20517/cdr.2022.77","DOIUrl":"10.20517/cdr.2022.77","url":null,"abstract":"<p><p>As of today, only two antiangiogenic monoclonal antibodies plus epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) combinations are FDA and EMA-approved and are recommended by American Society of Clinical Oncology, European Society for Medical Oncology, and National Comprehensive Cancer Network for the first-line treatment of EGFR+ advanced non-small cell lung cancer patients: erlotinib plus bevacizumab and erlotinib plus ramucirumab. However, all treated patients eventually become unresponsive to such drugs, due to several different acquired resistance mechanisms, mainly represented by T790M substitutions and MET amplifications. While osimertinib treatment in T790M+ patients still represents the only approved treatment, MET-TKIs will likely change this status quo in the near future. In fact, existing clinical data strongly support a role for MET-TKI-based combinations in EGFR+ MET-amplified patients, possibly revolutionizing our current treatment algorithm. Chemotherapy plus immunotherapy plus antiangiogenic therapy combinations could also represent another useful addition.</p>","PeriodicalId":70759,"journal":{"name":"癌症耐药(英文)","volume":"5 4","pages":"1016-1024"},"PeriodicalIF":4.6,"publicationDate":"2022-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9771735/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10519778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanisms of neratinib resistance in HER2-mutant metastatic breast cancer. HER2突变转移性乳腺癌的奈瑞替尼耐药机制
IF 4.6
癌症耐药(英文) Pub Date : 2022-09-01 eCollection Date: 2022-01-01 DOI: 10.20517/cdr.2022.48
Lisa D Eli, Shyam M Kavuri
{"title":"Mechanisms of neratinib resistance in <i>HER2</i>-mutant metastatic breast cancer.","authors":"Lisa D Eli, Shyam M Kavuri","doi":"10.20517/cdr.2022.48","DOIUrl":"10.20517/cdr.2022.48","url":null,"abstract":"<p><p>Human epidermal growth factor receptor 2 (HER2) is a major drug target and clinical biomarker in breast cancer treatment. Targeting <i>HER2</i> gene amplification is one of the greatest successes in oncology, resulting in the use of a wide array of HER2-directed agents in the clinic. The discovery of <i>HER2</i>-activating mutations as novel therapeutic targets in breast and other cancers marked a significant advance in the field, which led to the metastatic breast and other solid tumor trials MutHER (NCT01670877), SUMMIT (NCT01953926), and one arm of plasmaMATCH (NCT03182634). These trials reported initial clinical benefit followed by eventual relapse ascribed to either primary or acquired resistance. These resistance mechanisms are mediated by additional secondary genomic alterations within <i>HER2</i> itself and via hyperactivation of oncogenic signaling within the downstream signaling axis.</p>","PeriodicalId":70759,"journal":{"name":"癌症耐药(英文)","volume":"5 4","pages":"873-881"},"PeriodicalIF":4.6,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9771739/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10520240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Drug and apoptosis resistance in cancer stem cells: a puzzle with many pieces. 癌症干细胞的抗药性和抗凋亡性:一块块拼图。
IF 4.6
癌症耐药(英文) Pub Date : 2022-08-02 eCollection Date: 2022-01-01 DOI: 10.20517/cdr.2022.20
Ahmad R Safa
{"title":"Drug and apoptosis resistance in cancer stem cells: a puzzle with many pieces.","authors":"Ahmad R Safa","doi":"10.20517/cdr.2022.20","DOIUrl":"10.20517/cdr.2022.20","url":null,"abstract":"<p><p>Resistance to anticancer agents and apoptosis results in cancer relapse and is associated with cancer mortality. Substantial data have provided convincing evidence establishing that human cancers emerge from cancer stem cells (CSCs), which display self-renewal and are resistant to anticancer drugs, radiation, and apoptosis, and express enhanced epithelial to mesenchymal progression. CSCs represent a heterogeneous tumor cell population and lack specific cellular targets, which makes it a great challenge to target and eradicate them. Similarly, their close relationship with the tumor microenvironment creates greater complexity in developing novel treatment strategies targeting CSCs. Several mechanisms participate in the drug and apoptosis resistance phenotype in CSCs in various cancers. These include enhanced expression of ATP-binding cassette membrane transporters, activation of various cytoprotective and survival signaling pathways, dysregulation of stemness signaling pathways, aberrant DNA repair mechanisms, increased quiescence, autophagy, increased immune evasion, deficiency of mitochondrial-mediated apoptosis, upregulation of anti-apoptotic proteins including c-FLIP [cellular FLICE (FADD-like IL-1β-converting enzyme)-inhibitory protein], Bcl-2 family members, inhibitors of apoptosis proteins, and PI3K/AKT signaling. Studying such mechanisms not only provides mechanistic insights into these cells that are unresponsive to drugs, but may lead to the development of targeted and effective therapeutics to eradicate CSCs. Several studies have identified promising strategies to target CSCs. These emerging strategies may help target CSC-associated drug resistance and metastasis in clinical settings. This article will review the CSCs drug and apoptosis resistance mechanisms and how to target CSCs.</p>","PeriodicalId":70759,"journal":{"name":"癌症耐药(英文)","volume":"5 4","pages":"850-872"},"PeriodicalIF":4.6,"publicationDate":"2022-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9771762/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10520243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Drug resistance and minimal residual disease in multiple myeloma. 多发性骨髓瘤的耐药性和微小残留病
IF 4.6
癌症耐药(英文) Pub Date : 2022-02-16 eCollection Date: 2022-01-01 DOI: 10.20517/cdr.2021.116
Alessandro Gozzetti, Sara Ciofini, Anna Sicuranza, Paola Pacelli, Donatella Raspadori, Emanuele Cencini, Dania Tocci, Monica Bocchia
{"title":"Drug resistance and minimal residual disease in multiple myeloma.","authors":"Alessandro Gozzetti, Sara Ciofini, Anna Sicuranza, Paola Pacelli, Donatella Raspadori, Emanuele Cencini, Dania Tocci, Monica Bocchia","doi":"10.20517/cdr.2021.116","DOIUrl":"10.20517/cdr.2021.116","url":null,"abstract":"<p><p>Great progress has been made in improving survival in multiple myeloma (MM) patients over the last 30 years. New drugs have been introduced and complete responses are frequently seen. However, the majority of MM patients do experience a relapse at a variable time after treatment, and ultimately the disease becomes drug-resistant following therapies. Recently, minimal residual disease (MRD) detection has been introduced in clinical trials utilizing novel therapeutic agents to measure the depth of response. MRD can be considered as a surrogate for both progression-free and overall survival. In this perspective, the persistence of a residual therapy-resistant myeloma plasma cell clone can be associated with inferior survivals. The present review gives an overview of drug resistance in MM, i.e., mutation of β5 subunit of the proteasome; upregulation of pumps of efflux; heat shock protein induction for proteasome inhibitors; downregulation of <i>CRBN</i> expression; deregulation of <i>IRF4</i> expression; mutation of <i>CRBN</i>, <i>IKZF1</i>, and <i>IKZF3</i> for immunomodulatory drugs and decreased target expression; complement protein increase; sBCMA increase; and BCMA down expression for monoclonal antibodies. Multicolor flow cytometry, or next-generation flow, and next-generation sequencing are currently the techniques available to measure MRD with sensitivity at 10<sup>-5</sup>. Sustained MRD negativity is related to prolonged survival, and it is evaluated in all recent clinical trials as a surrogate of drug efficacy.</p>","PeriodicalId":70759,"journal":{"name":"癌症耐药(英文)","volume":"5 1","pages":"171-183"},"PeriodicalIF":4.6,"publicationDate":"2022-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8992600/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44851889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Loss of HER2 in breast cancer: biological mechanisms and technical pitfalls. 乳腺癌中HER2的缺失:生物学机制和技术缺陷。
癌症耐药(英文) Pub Date : 2022-01-01 DOI: 10.20517/cdr.2022.55
Stefania Morganti, Mariia Ivanova, Emanuela Ferraro, Liliana Ascione, Grazia Vivanet, Giuseppina Bonizzi, Giuseppe Curigliano, Nicola Fusco, Carmen Criscitiello
{"title":"Loss of HER2 in breast cancer: biological mechanisms and technical pitfalls.","authors":"Stefania Morganti,&nbsp;Mariia Ivanova,&nbsp;Emanuela Ferraro,&nbsp;Liliana Ascione,&nbsp;Grazia Vivanet,&nbsp;Giuseppina Bonizzi,&nbsp;Giuseppe Curigliano,&nbsp;Nicola Fusco,&nbsp;Carmen Criscitiello","doi":"10.20517/cdr.2022.55","DOIUrl":"https://doi.org/10.20517/cdr.2022.55","url":null,"abstract":"<p><p>Loss of HER2 in previously HER2-positive breast tumors is not rare, occurring in up to 50% of breast cancers; however, clinical research and practice underestimate this issue. Many studies have reported the loss of HER2 after neoadjuvant therapy and at metastatic relapse and identified clinicopathological variables more frequently associated with this event. Nevertheless, the biological mechanisms underlying HER2 loss are still poorly understood. HER2 downregulation, intratumoral heterogeneity, clonal selection, and true subtype switch have been suggested as potential causes of HER2 loss, but translational studies specifically investigating the biology behind HER2 loss are virtually absent. On the other side, technical pitfalls may justify HER2 loss in some of these samples. The best treatment strategy for patients with HER2 loss is currently unknown. Considering the prevalence of this phenomenon and its apparent correlation with worse outcomes, we believe that correlative studies specifically addressing HER2 loss are warranted.</p>","PeriodicalId":70759,"journal":{"name":"癌症耐药(英文)","volume":"5 4","pages":"971-980"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9771738/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9853384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Cancer-associated fibroblasts as accomplices to confer therapeutic resistance in cancer. 癌症相关成纤维细胞是癌症治疗耐药的帮凶。
癌症耐药(英文) Pub Date : 2022-01-01 DOI: 10.20517/cdr.2022.67
Wenyu Wang, Bing Cheng, Qiang Yu
{"title":"Cancer-associated fibroblasts as accomplices to confer therapeutic resistance in cancer.","authors":"Wenyu Wang,&nbsp;Bing Cheng,&nbsp;Qiang Yu","doi":"10.20517/cdr.2022.67","DOIUrl":"https://doi.org/10.20517/cdr.2022.67","url":null,"abstract":"<p><p>The \"seed and soil\" concept has reformed paradigms for cancer treatment in the past decade. Accumulating evidence indicates that the intimate crosstalk between cancer cells and stromal cells plays a tremendous role in tumor progression. Cancer-associated fibroblasts (CAFs), the largest population of stroma cells, influence therapeutic effects through diverse mechanisms. Herein, we summarize the recent advances in the versatile functions of CAFs regarding their heterogeneity, and we mainly discuss the pro-tumorigenic functions of CAFs which promote tumorigenesis and confer therapeutic resistance to tumors. Targeting CAFs is emerging as one of the most appealing strategies in anticancer therapies. The endeavors to target or reprogram the specific subtypes of CAFs provide great cancer treatment opportunities, which may provide a better clinical benefit to cancer patients.</p>","PeriodicalId":70759,"journal":{"name":"癌症耐药(英文)","volume":"5 4","pages":"889-901"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9771752/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10520244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Discovery of the inhibitor of DNA binding 1 as a novel marker for radioresistance in pancreatic cancer using genome-wide RNA-seq. 利用全基因组RNA-seq发现DNA结合1抑制剂作为胰腺癌放射耐药的新标志物。
癌症耐药(英文) Pub Date : 2022-01-01 DOI: 10.20517/cdr.2022.60
Oscar Zuniga, Stephanie Byrum, Adam R Wolfe
{"title":"Discovery of the inhibitor of DNA binding 1 as a novel marker for radioresistance in pancreatic cancer using genome-wide RNA-seq.","authors":"Oscar Zuniga,&nbsp;Stephanie Byrum,&nbsp;Adam R Wolfe","doi":"10.20517/cdr.2022.60","DOIUrl":"https://doi.org/10.20517/cdr.2022.60","url":null,"abstract":"<p><p><b>Purpose/Objective(s):</b> Discovery of genetic drivers of radioresistance is critical for developing novel therapeutic strategies to combine with radiotherapy of radioresistant PDAC. In this study, we used genome-wide RNA-seq to identify genes upregulated in generated radioresistant PDAC cell lines and discovered the Inhibitor of DNA Binding 1 (ID1) gene as a potential regulator of radioresistance in PDAC. <b>Materials/Methods:</b> Radioresistant clones of the PDAC cell lines MIA PaCa-2 and PANC-1 were generated by delivering daily ionizing irradiation (IR) (2 Gy/day) <i>in vitro</i> over two weeks (total 20 Gy) followed by standard clonogenic assays following one week from the end of IR. The generated RR and parental cell lines were submitted for RNA-seq analysis to identify differentially expressed genes. The Limma R package was used to calculate differential expression among genes. Log2 fold change values were calculated for each sample compared to the control. Genes with an absolute fold change > 1 were considered significant. RNA sequencing expression data from the Cancer Genome Atlas (TCGA) database was analyzed through the online databases GEPIA, cBioPortal, and the Human Protein Atlas. <b>Results:</b> Following exposure to two weeks of 2 Gy daily IR in vitro, the two PDAC cell lines showed significantly greater clonogenic cell survival than their parental cell lines, indicating enhanced RR in these cells. RNA-seq analysis comparing parental and RR cell lines found upregulated seven genes (TNS4, ZDHHC8P1, APLNR, AQP3, SPP1, ID1, ID2) and seven genes downregulated (PTX3, ITGB2, EPS8L1, ALDH1L2, KCNT2, ARHGAP9, IFI16) in both RR cell lines. Western blotting confirmed increased expression of the ID1 protein in the RR cell lines compared to their parental cell lines. We found that ID1 mRNA was significantly higher in PDAC tumors compared to matched normal and high ID1 expression correlated with significantly worse disease-free survival (DFS) in PDAC patients (HR = 2.2, log rank <i>P</i> = 0.009). ID1 mRNA expression was also strongly correlated in tumors with TP53 mutation, a known driver of radioresistance. <b>Conclusion:</b> Our analysis indicates a novel role of ID1 in PDAC radioresistance. ID1 expression is higher in tumor tissue compared to normal, and high expression correlates with both worse DFS and association with the TP53 mutation, suggesting that targeting ID1 prior to IR is an attractive strategy for overcoming radioresistance in PDAC.</p>","PeriodicalId":70759,"journal":{"name":"癌症耐药(英文)","volume":"5 4","pages":"926-938"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9771737/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10520242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信