Shubham Semwal, Maria Karamolegkou, Stéphanie Flament, Nessim Raouraoua, Kenneth Verstraete, Aurélien Thureau, Frank Wien, Fabrice Bray, Savvas N Savvides, Julie Bouckaert
{"title":"Small-angle X-ray scattering of engineered antigen-binding fragments: the case of glycosylated Fab from the Mannitou IgM antibody.","authors":"Shubham Semwal, Maria Karamolegkou, Stéphanie Flament, Nessim Raouraoua, Kenneth Verstraete, Aurélien Thureau, Frank Wien, Fabrice Bray, Savvas N Savvides, Julie Bouckaert","doi":"10.1107/S2053230X24012159","DOIUrl":"10.1107/S2053230X24012159","url":null,"abstract":"<p><p>Monoclonal antibodies recognizing nonprotein antigens remain largely underrepresented in our understanding of the molecular repertoire of innate and adaptive immunity. One such antibody is Mannitou, a murine IgM that recognizes paucimannosidic glycans. In this work, we report the production and purification of the recombinant antigen-binding fragment (Fab) of Mannitou IgM (Mannitou Fab) and employ a combination of biochemical and biophysical approaches to obtain its initial structural characterization. To this end, recombinant Mannitou Fab comprising the light chain (VL-CL) and heavy chain (VH-Cμ1) was produced in HEK293 FreeStyle cells and purified by cobalt-affinity chromatography followed by size-exclusion chromatography (SEC), which revealed two distinct oligomeric states consistent with a predominant monomeric form and a minor dimeric form. We employed SEC inline with multi-angle light scattering (SEC-MALS) and SEC coupled to small-angle X-ray scattering (SEC-SAXS) to establish that Mannitou Fab indeed adopts monomeric and dimeric forms in solution. Interestingly, Mannitou Fab is N-glycosylated at Asn164 of the heavy chain via HexNAc(5)Hex(6)Fuc(1-3) as revealed by mass spectrometry. We leveraged this information in conjunction with predicted structures of Mannitou Fab to facilitate the interpretation and modelling of SAXS data, leading to a plausible model for glycosylated Mannitou Fab. Analysis of the two chromatographically isolatable forms of Mannitou Fab using synchrotron-radiation circular dichroism revealed that the heat-denaturated Mannitou Fab monomer shares similar secondary-structural elements with the Mannitou Fab dimer, indicating that the latter may be misfolded. Collectively, the findings of this study will set the stage for future structural studies of Mannitou Fab and contribute to our understanding of possible side products due to misfolding during the production of recombinant Fabs, highlighting the importance of glycosylation in obtaining stable and monodisperse monomeric forms of recombinant Fabs.</p>","PeriodicalId":7029,"journal":{"name":"Acta crystallographica. Section F, Structural biology communications","volume":" ","pages":"19-29"},"PeriodicalIF":1.1,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142881045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jesuferanmi P Ayanlade, Dylan E Davis, Sandhya Subramanian, David M Dranow, Donald D Lorimer, Brad Hammerson, Peter J Myler, Oluwatoyin A Asojo
{"title":"Co-crystal structure of Helicobacter pylori biotin protein ligase with biotinyl-5-ATP.","authors":"Jesuferanmi P Ayanlade, Dylan E Davis, Sandhya Subramanian, David M Dranow, Donald D Lorimer, Brad Hammerson, Peter J Myler, Oluwatoyin A Asojo","doi":"10.1107/S2053230X24012056","DOIUrl":"10.1107/S2053230X24012056","url":null,"abstract":"<p><p>Helicobacter pylori, a type 1 carcinogen that causes human gastric ulcers and cancer, is a priority target of the Seattle Structural Genomics Center for Infectious Disease (SSGCID). These efforts include determining the structures of potential H. pylori therapeutic targets. Here, the purification, crystallization and X-ray structure of one such target, H. pylori biotin protein ligase (HpBPL), are reported. HpBPL catalyzes the activation of various biotin-dependent metabolic pathways, including fatty-acid synthesis, gluconeogenesis and amino-acid catabolism, and may facilitate the survival of H. pylori in the high-pH gastric mucosa. HpBPL is a prototypical bacterial biotin protein ligase, despite having less than 35% sequence identity to any reported structure in the Protein Data Bank. A biotinyl-5-ATP molecule sits in a well conserved cavity. HpBPL shares extensive tertiary-structural similarity with Mycobacterium tuberculosis biotin protein ligase (MtBPL), despite having less than 22% sequence identity. The active site of HpBPL is very similar to that of MtBPL and has the necessary residues to bind inhibitors developed for MtBPL.</p>","PeriodicalId":7029,"journal":{"name":"Acta crystallographica. Section F, Structural biology communications","volume":" ","pages":"11-18"},"PeriodicalIF":1.1,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142862916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Revisiting sodium phosphotungstate and ammonium molybdate as nonradioactive negative-staining agents for single-particle analysis.","authors":"Monika Gunkel, Arthur Macha, Elmar Behrmann","doi":"10.1107/S2053230X24011294","DOIUrl":"10.1107/S2053230X24011294","url":null,"abstract":"<p><p>This study reports the successful replacement of uranyl-based stains by either sodium phosphotungstate or ammonium molybdate in negative-staining electron microscopy. Using apoferritin as a test specimen, it is demonstrated that in combination with a facile on-grid fixation step, both stains yield comparable images to uranyl formate. Subsequently, using β-galactosidase, it is shown that both stains can also successfully be employed for single-particle analysis, yielding virtually indistinguishable results from uranyl formate. As both replacement stains are nonradioactive, they are not subjected to the same handling restrictions as uranyl-based stains. Therefore they are not only cheaper to use, but also make decentralized sample-grid preparation, directly after purification, accessible to a broader range of scientists.</p>","PeriodicalId":7029,"journal":{"name":"Acta crystallographica. Section F, Structural biology communications","volume":" ","pages":""},"PeriodicalIF":1.1,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11614109/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142724691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dylan E Davis, Jesuferanmi P Ayanlade, David T Laseinde, Sandhya Subramanian, Hannah Udell, Donald J Lorimer, David M Dranow, Thomas E Edwards, Peter J Myler, Oluwatoyin A Asojo
{"title":"Crystal structure of glutamyl-tRNA synthetase from Helicobacter pylori.","authors":"Dylan E Davis, Jesuferanmi P Ayanlade, David T Laseinde, Sandhya Subramanian, Hannah Udell, Donald J Lorimer, David M Dranow, Thomas E Edwards, Peter J Myler, Oluwatoyin A Asojo","doi":"10.1107/S2053230X24011099","DOIUrl":"10.1107/S2053230X24011099","url":null,"abstract":"<p><p>Helicobacter pylori is one of the most common bacterial infections; over two-thirds of the world's population is infected by early childhood. Persistent H. pylori infection results in gastric ulcers and cancers. Due to drug resistance, there is a need to develop alternative treatments to clear H. pylori. The Seattle Structural Genomics Center for Infectious Disease (SSGCID) conducts structure-function analysis of potential therapeutic targets from H. pylori. Glutamyl-tRNA synthetase (GluRS) is essential for tRNA aminoacylation and is under investigation as a bacterial drug target. The SSGCID produced, crystallized and determined the apo structure of H. pylori GluRS (HpGluRS). HpGluRS has the prototypical bacterial GluRS topology and has similar binding sites and tertiary structures to other bacterial GluRS that are promising drug targets. Residues involved in glutamate binding are well conserved in comparison with Pseudomonas aeruginosa GluRS (PaGluRS), which has been studied to develop promising new inhibitors for P. aeruginosa. These structural similarities can be exploited for drug discovery and repurposing to generate new antibacterials to clear persistent H. pylori infection and reduce gastric ulcers and cancer.</p>","PeriodicalId":7029,"journal":{"name":"Acta crystallographica. Section F, Structural biology communications","volume":" ","pages":""},"PeriodicalIF":1.1,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11614106/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142724739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Amber D Kimble, Omolara C O Dawson, Lijun Liu, Sandhya Subramanian, Anne Cooper, Kevin Battaile, Justin Craig, Elizabeth Harmon, Peter Myler, Scott Lovell, Oluwatoyin A Asojo
{"title":"Crystal structure of N-terminally hexahistidine-tagged Onchocerca volvulus macrophage migration inhibitory factor-1.","authors":"Amber D Kimble, Omolara C O Dawson, Lijun Liu, Sandhya Subramanian, Anne Cooper, Kevin Battaile, Justin Craig, Elizabeth Harmon, Peter Myler, Scott Lovell, Oluwatoyin A Asojo","doi":"10.1107/S2053230X24010550","DOIUrl":"10.1107/S2053230X24010550","url":null,"abstract":"<p><p>Onchocerca volvulus causes blindness, onchocerciasis, skin infections and devastating neurological diseases such as nodding syndrome. New treatments are needed because the currently used drug, ivermectin, is contraindicated in pregnant women and those co-infected with Loa loa. The Seattle Structural Genomics Center for Infectious Disease (SSGCID) produced, crystallized and determined the apo structure of N-terminally hexahistidine-tagged O. volvulus macrophage migration inhibitory factor-1 (His-OvMIF-1). OvMIF-1 is a possible drug target. His-OvMIF-1 has a unique jellyfish-like structure with a prototypical macrophage migration inhibitory factor (MIF) trimer as the `head' and a unique C-terminal `tail'. Deleting the N-terminal tag reveals an OvMIF-1 structure with a larger cavity than that observed in human MIF that can be targeted for drug repurposing and discovery. Removal of the tag will be necessary to determine the actual biological oligomer of OvMIF-1 because size-exclusion chomatographic analysis of His-OvMIF-1 suggests a monomer, while PISA analysis suggests a hexamer stabilized by the unique C-terminal tails.</p>","PeriodicalId":7029,"journal":{"name":"Acta crystallographica. Section F, Structural biology communications","volume":" ","pages":""},"PeriodicalIF":1.1,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11614107/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142581845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aruesha Srivastava, Aryana Nair, Omolara C O Dawson, Raymond Gao, Lijun Liu, Justin K Craig, Kevin P Battaile, Elizabeth K Harmon, Lynn K Barrett, Wesley C Van Voorhis, Sandhya Subramanian, Peter J Myler, Scott Lovell, Oluwatoyin A Asojo, Rabih Darwiche
{"title":"Structures of Trichomonas vaginalis macrophage migratory inhibitory factor.","authors":"Aruesha Srivastava, Aryana Nair, Omolara C O Dawson, Raymond Gao, Lijun Liu, Justin K Craig, Kevin P Battaile, Elizabeth K Harmon, Lynn K Barrett, Wesley C Van Voorhis, Sandhya Subramanian, Peter J Myler, Scott Lovell, Oluwatoyin A Asojo, Rabih Darwiche","doi":"10.1107/S2053230X24011105","DOIUrl":"10.1107/S2053230X24011105","url":null,"abstract":"<p><p>The unicellular parasitic protozoan Trichomonas vaginalis causes trichomoniasis, the most prevalent nonviral sexually transmitted disease globally. T. vaginalis evades host immune responses by producing homologs of host proteins, including cytokines such as macrophage migration inhibitory factor. T. vaginalis macrophage migration inhibitory factor (TvMIF) helps to facilitate the survival of T. vaginalis during nutritional stress conditions, increases prostate cell proliferation and invasiveness, and induces inflammation-related cellular pathways, thus mimicking the ability of human MIF to increase inflammation and cell proliferation. The production, crystallization and three structures of N-terminally hexahistidine-tagged TvMIF reveal a prototypical MIF trimer with a topology similar to that of human homologs (hMIF-1 and hMIF-2). The N-terminal tag obscures the expected pyruvate-binding site. The similarity of TvMIF to its human homologs can be exploited for structure-based drug discovery.</p>","PeriodicalId":7029,"journal":{"name":"Acta crystallographica. Section F, Structural biology communications","volume":" ","pages":""},"PeriodicalIF":1.1,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11614108/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142724696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}