Small-angle X-ray scattering of engineered antigen-binding fragments: the case of glycosylated Fab from the Mannitou IgM antibody.

IF 1.1 4区 生物学 Q4 BIOCHEMICAL RESEARCH METHODS
Shubham Semwal, Maria Karamolegkou, Stéphanie Flament, Nessim Raouraoua, Kenneth Verstraete, Aurélien Thureau, Frank Wien, Fabrice Bray, Savvas N Savvides, Julie Bouckaert
{"title":"Small-angle X-ray scattering of engineered antigen-binding fragments: the case of glycosylated Fab from the Mannitou IgM antibody.","authors":"Shubham Semwal, Maria Karamolegkou, Stéphanie Flament, Nessim Raouraoua, Kenneth Verstraete, Aurélien Thureau, Frank Wien, Fabrice Bray, Savvas N Savvides, Julie Bouckaert","doi":"10.1107/S2053230X24012159","DOIUrl":null,"url":null,"abstract":"<p><p>Monoclonal antibodies recognizing nonprotein antigens remain largely underrepresented in our understanding of the molecular repertoire of innate and adaptive immunity. One such antibody is Mannitou, a murine IgM that recognizes paucimannosidic glycans. In this work, we report the production and purification of the recombinant antigen-binding fragment (Fab) of Mannitou IgM (Mannitou Fab) and employ a combination of biochemical and biophysical approaches to obtain its initial structural characterization. To this end, recombinant Mannitou Fab comprising the light chain (VL-CL) and heavy chain (VH-Cμ1) was produced in HEK293 FreeStyle cells and purified by cobalt-affinity chromatography followed by size-exclusion chromatography (SEC), which revealed two distinct oligomeric states consistent with a predominant monomeric form and a minor dimeric form. We employed SEC inline with multi-angle light scattering (SEC-MALS) and SEC coupled to small-angle X-ray scattering (SEC-SAXS) to establish that Mannitou Fab indeed adopts monomeric and dimeric forms in solution. Interestingly, Mannitou Fab is N-glycosylated at Asn164 of the heavy chain via HexNAc(5)Hex(6)Fuc(1-3) as revealed by mass spectrometry. We leveraged this information in conjunction with predicted structures of Mannitou Fab to facilitate the interpretation and modelling of SAXS data, leading to a plausible model for glycosylated Mannitou Fab. Analysis of the two chromatographically isolatable forms of Mannitou Fab using synchrotron-radiation circular dichroism revealed that the heat-denaturated Mannitou Fab monomer shares similar secondary-structural elements with the Mannitou Fab dimer, indicating that the latter may be misfolded. Collectively, the findings of this study will set the stage for future structural studies of Mannitou Fab and contribute to our understanding of possible side products due to misfolding during the production of recombinant Fabs, highlighting the importance of glycosylation in obtaining stable and monodisperse monomeric forms of recombinant Fabs.</p>","PeriodicalId":7029,"journal":{"name":"Acta crystallographica. Section F, Structural biology communications","volume":" ","pages":"19-29"},"PeriodicalIF":1.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta crystallographica. Section F, Structural biology communications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1107/S2053230X24012159","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Monoclonal antibodies recognizing nonprotein antigens remain largely underrepresented in our understanding of the molecular repertoire of innate and adaptive immunity. One such antibody is Mannitou, a murine IgM that recognizes paucimannosidic glycans. In this work, we report the production and purification of the recombinant antigen-binding fragment (Fab) of Mannitou IgM (Mannitou Fab) and employ a combination of biochemical and biophysical approaches to obtain its initial structural characterization. To this end, recombinant Mannitou Fab comprising the light chain (VL-CL) and heavy chain (VH-Cμ1) was produced in HEK293 FreeStyle cells and purified by cobalt-affinity chromatography followed by size-exclusion chromatography (SEC), which revealed two distinct oligomeric states consistent with a predominant monomeric form and a minor dimeric form. We employed SEC inline with multi-angle light scattering (SEC-MALS) and SEC coupled to small-angle X-ray scattering (SEC-SAXS) to establish that Mannitou Fab indeed adopts monomeric and dimeric forms in solution. Interestingly, Mannitou Fab is N-glycosylated at Asn164 of the heavy chain via HexNAc(5)Hex(6)Fuc(1-3) as revealed by mass spectrometry. We leveraged this information in conjunction with predicted structures of Mannitou Fab to facilitate the interpretation and modelling of SAXS data, leading to a plausible model for glycosylated Mannitou Fab. Analysis of the two chromatographically isolatable forms of Mannitou Fab using synchrotron-radiation circular dichroism revealed that the heat-denaturated Mannitou Fab monomer shares similar secondary-structural elements with the Mannitou Fab dimer, indicating that the latter may be misfolded. Collectively, the findings of this study will set the stage for future structural studies of Mannitou Fab and contribute to our understanding of possible side products due to misfolding during the production of recombinant Fabs, highlighting the importance of glycosylation in obtaining stable and monodisperse monomeric forms of recombinant Fabs.

工程抗原结合片段的小角度x射线散射:来自Mannitou IgM抗体的糖基化Fab的案例。
识别非蛋白抗原的单克隆抗体在我们对先天免疫和适应性免疫的分子库的理解中仍然很大程度上缺乏代表性。一种这样的抗体是Mannitou,一种识别少糖苷聚糖的小鼠IgM。在这项工作中,我们报道了Mannitou IgM重组抗原结合片段(Fab)的生产和纯化(Mannitou Fab),并采用生物化学和生物物理相结合的方法获得其初始结构表征。为此,在HEK293自由式细胞中制备了含有轻链(VL-CL)和重链(VH-Cμ1)的重组Mannitou Fab,并通过钴亲和层析和大小排斥层析(SEC)纯化,结果显示出两种不同的低聚形态,主要为单体形态,次要为二聚体形态。我们使用SEC与多角度光散射(SEC- mals)和SEC与小角度x射线散射(SEC- saxs)耦合来确定Mannitou Fab在溶液中确实采用单体和二聚体形式。有趣的是,质谱分析显示,Mannitou Fab通过HexNAc(5)Hex(6)Fuc(1-3)在重链Asn164处进行了n -糖基化。我们将这些信息与Mannitou Fab的预测结构结合起来,以促进SAXS数据的解释和建模,从而得出糖基化Mannitou Fab的合理模型。利用同步辐射圆二色分析两种可分离形式的Mannitou Fab,发现热变性的Mannitou Fab单体与Mannitou Fab二聚体具有相似的二级结构元素,表明后者可能是错误折叠的。总的来说,本研究的发现将为未来Mannitou Fab的结构研究奠定基础,并有助于我们了解重组Fab生产过程中错误折叠可能产生的副作用,强调糖基化在获得稳定和单分散的重组Fab单体形式中的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta crystallographica. Section F, Structural biology communications
Acta crystallographica. Section F, Structural biology communications BIOCHEMICAL RESEARCH METHODSBIOCHEMISTRY &-BIOCHEMISTRY & MOLECULAR BIOLOGY
CiteScore
1.90
自引率
0.00%
发文量
95
期刊介绍: Acta Crystallographica Section F is a rapid structural biology communications journal. Articles on any aspect of structural biology, including structures determined using high-throughput methods or from iterative studies such as those used in the pharmaceutical industry, are welcomed by the journal. The journal offers the option of open access, and all communications benefit from unlimited free use of colour illustrations and no page charges. Authors are encouraged to submit multimedia content for publication with their articles. Acta Cryst. F has a dedicated online tool called publBio that is designed to make the preparation and submission of articles easier for authors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信