Jesuferanmi P Ayanlade, Dylan E Davis, Sandhya Subramanian, David M Dranow, Donald D Lorimer, Brad Hammerson, Peter J Myler, Oluwatoyin A Asojo
{"title":"幽门螺旋杆菌生物素蛋白连接酶与生物素-5-ATP 的共晶体结构。","authors":"Jesuferanmi P Ayanlade, Dylan E Davis, Sandhya Subramanian, David M Dranow, Donald D Lorimer, Brad Hammerson, Peter J Myler, Oluwatoyin A Asojo","doi":"10.1107/S2053230X24012056","DOIUrl":null,"url":null,"abstract":"<p><p>Helicobacter pylori, a type 1 carcinogen that causes human gastric ulcers and cancer, is a priority target of the Seattle Structural Genomics Center for Infectious Disease (SSGCID). These efforts include determining the structures of potential H. pylori therapeutic targets. Here, the purification, crystallization and X-ray structure of one such target, H. pylori biotin protein ligase (HpBPL), are reported. HpBPL catalyzes the activation of various biotin-dependent metabolic pathways, including fatty-acid synthesis, gluconeogenesis and amino-acid catabolism, and may facilitate the survival of H. pylori in the high-pH gastric mucosa. HpBPL is a prototypical bacterial biotin protein ligase, despite having less than 35% sequence identity to any reported structure in the Protein Data Bank. A biotinyl-5-ATP molecule sits in a well conserved cavity. HpBPL shares extensive tertiary-structural similarity with Mycobacterium tuberculosis biotin protein ligase (MtBPL), despite having less than 22% sequence identity. The active site of HpBPL is very similar to that of MtBPL and has the necessary residues to bind inhibitors developed for MtBPL.</p>","PeriodicalId":7029,"journal":{"name":"Acta crystallographica. Section F, Structural biology communications","volume":" ","pages":"11-18"},"PeriodicalIF":1.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Co-crystal structure of Helicobacter pylori biotin protein ligase with biotinyl-5-ATP.\",\"authors\":\"Jesuferanmi P Ayanlade, Dylan E Davis, Sandhya Subramanian, David M Dranow, Donald D Lorimer, Brad Hammerson, Peter J Myler, Oluwatoyin A Asojo\",\"doi\":\"10.1107/S2053230X24012056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Helicobacter pylori, a type 1 carcinogen that causes human gastric ulcers and cancer, is a priority target of the Seattle Structural Genomics Center for Infectious Disease (SSGCID). These efforts include determining the structures of potential H. pylori therapeutic targets. Here, the purification, crystallization and X-ray structure of one such target, H. pylori biotin protein ligase (HpBPL), are reported. HpBPL catalyzes the activation of various biotin-dependent metabolic pathways, including fatty-acid synthesis, gluconeogenesis and amino-acid catabolism, and may facilitate the survival of H. pylori in the high-pH gastric mucosa. HpBPL is a prototypical bacterial biotin protein ligase, despite having less than 35% sequence identity to any reported structure in the Protein Data Bank. A biotinyl-5-ATP molecule sits in a well conserved cavity. HpBPL shares extensive tertiary-structural similarity with Mycobacterium tuberculosis biotin protein ligase (MtBPL), despite having less than 22% sequence identity. The active site of HpBPL is very similar to that of MtBPL and has the necessary residues to bind inhibitors developed for MtBPL.</p>\",\"PeriodicalId\":7029,\"journal\":{\"name\":\"Acta crystallographica. Section F, Structural biology communications\",\"volume\":\" \",\"pages\":\"11-18\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta crystallographica. Section F, Structural biology communications\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1107/S2053230X24012056\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta crystallographica. Section F, Structural biology communications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1107/S2053230X24012056","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
摘要
幽门螺杆菌是一种导致人类胃溃疡和癌症的1型致癌物,是西雅图传染病结构基因组学中心(SSGCID)的优先目标。这些努力包括确定潜在幽门螺杆菌治疗靶点的结构。本文报道了幽门螺杆菌生物素蛋白连接酶(H. pylori biotin protein ligase, HpBPL)的纯化、结晶和x射线结构。HpBPL催化激活多种生物素依赖的代谢途径,包括脂肪酸合成、糖异生和氨基酸分解代谢,并可能促进幽门螺杆菌在高ph胃粘膜中的生存。HpBPL是一种典型的细菌生物素蛋白连接酶,尽管与蛋白质数据库中任何已报道的结构的序列同源性不到35%。生物素-5- atp分子位于一个保守的腔中。HpBPL与结核分枝杆菌生物素蛋白连接酶(MtBPL)具有广泛的三级结构相似性,尽管序列同源性低于22%。HpBPL的活性位点与MtBPL非常相似,并且具有结合MtBPL抑制剂所必需的残基。
Co-crystal structure of Helicobacter pylori biotin protein ligase with biotinyl-5-ATP.
Helicobacter pylori, a type 1 carcinogen that causes human gastric ulcers and cancer, is a priority target of the Seattle Structural Genomics Center for Infectious Disease (SSGCID). These efforts include determining the structures of potential H. pylori therapeutic targets. Here, the purification, crystallization and X-ray structure of one such target, H. pylori biotin protein ligase (HpBPL), are reported. HpBPL catalyzes the activation of various biotin-dependent metabolic pathways, including fatty-acid synthesis, gluconeogenesis and amino-acid catabolism, and may facilitate the survival of H. pylori in the high-pH gastric mucosa. HpBPL is a prototypical bacterial biotin protein ligase, despite having less than 35% sequence identity to any reported structure in the Protein Data Bank. A biotinyl-5-ATP molecule sits in a well conserved cavity. HpBPL shares extensive tertiary-structural similarity with Mycobacterium tuberculosis biotin protein ligase (MtBPL), despite having less than 22% sequence identity. The active site of HpBPL is very similar to that of MtBPL and has the necessary residues to bind inhibitors developed for MtBPL.
期刊介绍:
Acta Crystallographica Section F is a rapid structural biology communications journal.
Articles on any aspect of structural biology, including structures determined using high-throughput methods or from iterative studies such as those used in the pharmaceutical industry, are welcomed by the journal.
The journal offers the option of open access, and all communications benefit from unlimited free use of colour illustrations and no page charges. Authors are encouraged to submit multimedia content for publication with their articles.
Acta Cryst. F has a dedicated online tool called publBio that is designed to make the preparation and submission of articles easier for authors.