{"title":"Prediction of creep behavior of Zr-Nb alloy under dual-phase condition using data driven models","authors":"Saptarshi Dutta, Puthuveettil Sreedharan Robi","doi":"10.1007/s11043-024-09703-6","DOIUrl":"10.1007/s11043-024-09703-6","url":null,"abstract":"<div><p>Pressure tubes (PTs) play an important role in the safe and efficient operation of Nuclear Power Plants (NPPs) as they contain the fuel bundles and provide structural integrity. Creep has been identified as one of the main degradation mechanisms of PTs, which are made widely of Zr-Nb alloys. The creep curve of a material gives an insight into the nature of its creep behavior. In the present investigation, accelerated creep experiments were conducted on Zr-2.5Nb PT alloy in the stress and temperature range of 22–58 MPa and 600–850 °C, respectively. Two data-driven models, namely Radial Basis Function Neural Network (RBFNN) and Least Square Fit (LSF) were developed to simulate the non-linearity of the creep curves. Applied stress, test temperature, and time to failure were taken as the input parameters for the models. It was observed that although the LSF could predict the primary creep zone, it failed to predict the transition between the secondary and tertiary creep region. However, the creep curves predicted by the RBFNN model were in close agreement with the experimental results, having a confidence level of ≈ 0.99. Two separate sets of creep experiments were also done later to verify the accuracy of the proposed models. The results from the study established the ability of the RBFNN technique to simulate the complex behavior of the creep curves.</p></div>","PeriodicalId":698,"journal":{"name":"Mechanics of Time-Dependent Materials","volume":"28 4","pages":"2963 - 2980"},"PeriodicalIF":2.1,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141115471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An investigation of biological tissue responses to thermal shock within the framework of fractional heat transfer theory","authors":"Rakhi Tiwari, Manushi Gupta","doi":"10.1007/s11043-024-09700-9","DOIUrl":"10.1007/s11043-024-09700-9","url":null,"abstract":"<div><p>The present article addresses a novel mathematical model involving the Atangana-Baleanu (A-B) definition of fractional derivatives in time that offers a new interpretation of the thermo-mechanical effects inside skin tissue during thermal therapy. A Laplace transform mechanism is proposed to achieve closed-form solutions for prominent physical quantities, such as temperature, displacement, strain, and thermal stress. Computational results are obtained in time domains using an efficient numerical inversion algorithm of Laplace transform. The impact of the fractional parameter is investigated on the variations of the field quantities through the graphical results. The behavior of each physical field is speculated against the time parameter. The domain of influence of each field quantity is suppressed when the definition of the Atangana Baleanu fractional model is adopted, replicating that the waves under the A-B fractional model predict the finite nature of propagation compared to the conventional heat transport model. Further, we observe that the nature of the thermo-mechanical waves becomes stable earlier inside the tissue.</p></div>","PeriodicalId":698,"journal":{"name":"Mechanics of Time-Dependent Materials","volume":"28 3","pages":"1597 - 1615"},"PeriodicalIF":2.1,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140969430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rakhi Tiwari, Satyam Sachan, Ahmed Abouelregal, Roushan Kumar, Mohamed E. Elzayady
{"title":"Viscothermoelastic vibrations on circular microplate resonators using the Moore–Gibson–Thompson thermal-conductivity model","authors":"Rakhi Tiwari, Satyam Sachan, Ahmed Abouelregal, Roushan Kumar, Mohamed E. Elzayady","doi":"10.1007/s11043-024-09699-z","DOIUrl":"10.1007/s11043-024-09699-z","url":null,"abstract":"<div><p>This research investigates the impact of thermoelastic coupling on thermally conducting, homogeneous, and isotropic Kelvin–Voigt-type circular microplate resonators. The study utilizes the Moore–Gibson–Thompson technique, which incorporates viscous effects. We examine the use of clamped boundary conditions and obtain analytical solutions in the Laplace-transform domain. In order to clarify the thermomechanical effects on the vibrations of a ceramic Si<sub>3</sub>N<sub>4</sub> plate resonator, we calculate numerical outcomes in the time domain by employing the inverse Laplace transform. We examine the impact of viscosity on many physical phenomena, including deflection, temperature, displacement, thermal moment in the radial direction, and radial stress. We give graphical findings that compare the results with and without the presence of viscosity. The study evaluates the precision and feasibility of the MGTE thermal-conductivity theory by comparing its numerical outcomes with well-established thermoelastic models, such as the classical theory, Lord–Shulman theory, and Green–Naghdi II and III theories. The MGTE theory showcases improved accuracy, facilitating the production of circular micro/nanoplate resonators with exceptional quality and decreased energy dissipation.</p></div>","PeriodicalId":698,"journal":{"name":"Mechanics of Time-Dependent Materials","volume":"28 3","pages":"1291 - 1311"},"PeriodicalIF":2.1,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140940073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Temperature-dependent thermal buckling and free vibration behavior of smart sandwich nanoplates with auxetic core and magneto-electro-elastic face layers","authors":"Kerim Gokhan Aktas, Fatih Pehlivan, Ismail Esen","doi":"10.1007/s11043-024-09698-0","DOIUrl":"https://doi.org/10.1007/s11043-024-09698-0","url":null,"abstract":"<p>This article addresses the thermomechanical thermal buckling and free vibration response of a novel smart sandwich nanoplate based on a sinusoidal higher-order shear deformation theory (SHSDT) with a stretching effect. In the proposed sandwich nanoplate, an auxetic core layer with a negative Poisson’s ratio made of Ti-6Al-4V is sandwiched between Ti-6Al-4V rim layers and magneto-electro-elastic (MEE) face layers. The MEE face layers are homogenous volumetric mixtures of cobalt ferrite (CoFe<sub>2</sub>O<sub>4</sub>) and barium titanate (BaTiO<sub>3</sub>). The mechanical and thermal material properties of the auxetic core and MEE face layers are temperature-dependent. Using Hamilton’s principle, governing equations are constructed. To characterize the size-dependent behavior of the nanoplate, governing equations are adapted with the nonlocal strain gradient theory (NSGT). By applying the principles of Navier’s technique, closed-form solutions are obtained. Parametric simulations are carried out to examine the effects of auxetic core parameters, temperature-dependent material properties, nonlocal parameters, electric, magnetic, and thermal loads on the free vibration and thermal buckling behavior of the nanoplate. According to the simulation results, it is determined that the auxetic core parameters, temperature-dependent material properties, and nonlocal factors significantly affect the thermomechanical behavior of the nanoplate. The outcomes of this investigation are expected to contribute to the advancement of smart nano-electromechanical systems, transducers, and nanosensors characterized by lightweight, exceptional structural integrity and temperature sensitivity. Also, the auxetic core with a negative Poisson’s ratio provides a metamaterial feature, and thanks to this feature, the proposed model has the potential to be used as an invisibility technology in sonar and radar-hiding applications.</p>","PeriodicalId":698,"journal":{"name":"Mechanics of Time-Dependent Materials","volume":"7 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140940016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ying-Chun Chen, Jie Yang, Yan-Feng Li, Rui Miao, Qiang Li, Xiao-li Fan
{"title":"The aging behavior of HDPE pipe bodies and butt-fusion welded joints: effects of thermal oxidative and hydrothermal accelerated aging","authors":"Ying-Chun Chen, Jie Yang, Yan-Feng Li, Rui Miao, Qiang Li, Xiao-li Fan","doi":"10.1007/s11043-024-09693-5","DOIUrl":"10.1007/s11043-024-09693-5","url":null,"abstract":"<div><p>We investigate the aging behavior of High-Density Polyethylene (HDPE) pipelines, specifically comparing the Pipe Body (PB) and Butt-Fusion Welded Joint (BFWJ) under thermal oxidative and hydrothermal accelerated aging conditions. Our results indicate that the performance disparity between PB and BFWJ diminishes as aging time increases. We also find that the specimen type affects the quantity of polyethylene fibers, with hydrothermal aging significantly affecting the cohesive force among these fibers in both PB and BFWJ. These findings on differential aging processes of PB and BFWJ contribute to a deeper understanding of HDPE pipeline durability and offer practical recommendations for mitigating degradation risks associated with these disparities. This research underscores the importance of considering specific aging behaviors in the maintenance and reliability assessment of HDPE pipeline systems used in energy transport, industrial, and agricultural applications.</p></div>","PeriodicalId":698,"journal":{"name":"Mechanics of Time-Dependent Materials","volume":"28 3","pages":"985 - 1002"},"PeriodicalIF":2.1,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140653897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mohamed E. Elzayady, Ahmed E. Abouelregal, Faisal Alsharif, Hashem Althagafi, Mohammed Alsubhi, Yazeed Alhassan
{"title":"Two-stage heat-transfer modeling of cylinder-cavity porous magnetoelastic bodies","authors":"Mohamed E. Elzayady, Ahmed E. Abouelregal, Faisal Alsharif, Hashem Althagafi, Mohammed Alsubhi, Yazeed Alhassan","doi":"10.1007/s11043-024-09691-7","DOIUrl":"10.1007/s11043-024-09691-7","url":null,"abstract":"<div><p>This paper investigates the thermoelastic behavior of porous materials under magnetic fields using a dual-phase lag (DPL) model, with a specific focus on an unbounded porous body containing a cylindrical cavity. By applying the Laplace transform to address the time-dependent aspects of the governing equations, we investigate the effects of harmonically varying heat loads on the material’s porous–thermoelastic response. Numerical simulations provide insights into the distribution of excess pore water pressure, temperature, displacement, thermal stresses, and the magnetic field within the material. Results are presented through graphical analyses, facilitating a detailed comparison of porous–thermoelastic behaviors under different conditions. This approach not only validates the model’s accuracy but also enhances our understanding of porous materials’ responses to thermal and magnetic stimuli, offering valuable implications for their design and safety in engineering applications.</p></div>","PeriodicalId":698,"journal":{"name":"Mechanics of Time-Dependent Materials","volume":"28 4","pages":"2819 - 2840"},"PeriodicalIF":2.1,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140657854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dynamic mechanical response and functional mechanisms in rabbit pulmonary tissue","authors":"Yue Liu, Qiong Deng, Yongshuai Wang, Chenxu Zhang, Mingwei Chen, Zhi Hu, Yinggang Miao","doi":"10.1007/s11043-024-09697-1","DOIUrl":"10.1007/s11043-024-09697-1","url":null,"abstract":"<div><p>Lung tissue plays a crucial role in biological functions and exhibits significant sensitivity to mechanical loading. Its mechanical properties have garnered increased attention for their potential to guide human protection strategies against collisions and explosions. However, the behavior and underlying mechanisms remain largely undefined, particularly under dynamic loading conditions. In the present study, rabbit lung tissues were subjected to directional compression loadings, both parallel and perpendicular to the trachea. For accurate dynamic measurements, a modified Hopkinson pressure bar was employed. To minimize spike-like stress characteristics, annular specimens were utilized, and a polymethyl methacrylate bar served as the transmission tube, in conjunction with semiconductor strain gauges, to enhance the amplification of transmission signals. Experiments were meticulously conducted using the modified split Hopkinson pressure bar and an Instron machine, covering a strain rate range of 0.0005–3000 s<sup>−1</sup>. The results revealed a pronounced rate-dependence in the stress–strain curves of lung tissue, characterized by an initial linear elastic regime, a deformation plateau, and ultimate densification. A significant dependency on strain rate was observed, with the strength of tissue increasing a thousandfold from quasi-static to dynamic loading. Anisotropic behavior was evident under both loading directions. Furthermore, both strain rate dependency and anisotropic behavior became more pronounced beyond 0.3 strain under dynamic loading and 0.45 under quasi-static loading. Finally, potential mechanisms involving tissue fluid discharge and the mechanical characteristics of orientated collagen were proposed. These mechanisms were corroborated by staining techniques that demonstrated the predominant orientation of collagen in a specific direction within rabbit lung tissue.</p></div>","PeriodicalId":698,"journal":{"name":"Mechanics of Time-Dependent Materials","volume":"28 4","pages":"2921 - 2936"},"PeriodicalIF":2.1,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140659383","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Characterization of the mechanical behavior and constitutive modeling of sandstone under acidic dry-wet cycles and dynamic loading","authors":"Pu Yuan, Xiaobo Zheng, Ningning Wei, Aobo Li","doi":"10.1007/s11043-024-09696-2","DOIUrl":"10.1007/s11043-024-09696-2","url":null,"abstract":"<div><p>We investigate herein the role of acidic dry-wet cycles and dynamic loading on the mechanical stability of sandstone, which is crucial for managing closed and abandoned mines’ safety. Using a split Hopkinson pressure bar, we conducted dynamic compression tests on sandstone samples exposed to four acidic conditions (pH = 3, 5, 6.5, 7) and five dry-wet cycle frequencies (1, 5, 10, 20, 30) at an impact pressure of 0.70 MPa. Our findings reveal that the dynamic stress-strain response of sandstone entails compacting, elastic, plastic, and failure phases, with peak stress and elasticity decreasing as the acidity and cycle frequency increase. Analytical techniques, including EDS, XRD, and NMR, showed changes in composition and porosity, indicating reduced deterioration compared to untreated stone. Based on Weibull distribution and damage mechanics, a dynamic damage constitutive model was developed to accurately predict the sandstone’s behavior under these conditions. This model, validated by experimental data, effectively captures the dynamic stress-strain characteristics of sandstone, indicating the importance of understanding environmental degradation effects on rock stability in mining contexts.</p></div>","PeriodicalId":698,"journal":{"name":"Mechanics of Time-Dependent Materials","volume":"28 4","pages":"2899 - 2919"},"PeriodicalIF":2.1,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140669534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The effect of transverse isotropy on the creep behavior of bedded salt under confining pressures","authors":"Kanya Kraipru, Kittitep Fuenkajorn, Thanittha Thongprapha","doi":"10.1007/s11043-024-09695-3","DOIUrl":"10.1007/s11043-024-09695-3","url":null,"abstract":"<div><p>In this paper, we investigate the role of transverse isotropy on the creep behavior of bedded salt. We conducted a series of triaxial creep tests on prismatic specimens subjected to confining pressures (<span>(sigma _{3})</span>) of up to 24 MPa and a constant octahedral shear stress (<span>(tau _{mathrm{o}})</span>) of 9 MPa. The specimens were oriented with their bedding planes at various angles (<span>(beta )</span>) to the major principal axis to simulate transverse isotropic conditions. Our findings reveal that both instantaneous and creep deformations are most significant when <span>(beta = 0^{circ })</span>, decreasing progressively to a minimum at <span>(beta = 90^{circ })</span> across all confining pressures. The discrepancy in deformations between these intrinsic angles narrows with increasing <span>(sigma _{3})</span>. Creep deformations for intermediate angles (<span>(0^{circ} < beta < 90^{circ })</span>) follow the elliptical equations. Utilizing the Burgers creep model, we observed that the instantaneous, viscoelastic moduli, and viscoplastic coefficients escalate with <span>(beta )</span>. The degree of anisotropy declines sharply as confining pressures increase, reaching an isotropic state under <span>(tau _{mathrm{o}} = 9text{ MPa})</span> and <span>(sigma _{3})</span> around 40 MPa, beyond which transient creep ceases, indicating a transition to Maxwell-material behavior. Employing linear viscoelastic theory, we derived an equation for time-dependent deformation under varying octahedral shear stresses. This enables the formulation of governing equations for Burgers-model parameters, considering bedding plane orientations, loading durations, and the interactions between shear and confining stresses.</p></div>","PeriodicalId":698,"journal":{"name":"Mechanics of Time-Dependent Materials","volume":"28 4","pages":"2879 - 2897"},"PeriodicalIF":2.1,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140610939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Assessment of the strength deterioration of a coal pillar using a strain-softening time-dependent constitutive model","authors":"Prudhvi Raju Gadepaka, Sonu, Ashok Jaiswal","doi":"10.1007/s11043-024-09692-6","DOIUrl":"10.1007/s11043-024-09692-6","url":null,"abstract":"<div><p>In this study, a time-dependent constitutive model of a coal pillar was developed using the Hoek–Brown strain-softening model, which is useful for studying the strength deterioration of a coal pillar over time. A database of 32 failed cases of coal pillars of different ages from the Witbank Coalfield has been utilized to deduce the strength parameters of the coal seam through back analysis. A three-dimensional finite-difference method (FDM) has been chosen to simulate the failed cases. The simulation results have been obtained in terms of pillar strength and FOS of the pillar concerning time. Based on the simulation results the life of the pillar is considered when FOS is nearly equal to 1. The appropriate strength parameters have been derived as peak strength parameters: <span>(m_{i} = 1.47)</span> and <span>(s_{i} = 0.01)</span>; residual parameters: <span>(m_{r} = 0.125)</span> and <span>(s_{r} = 0.00001)</span>; strength-reduction parameters: <span>(alpha = 0.04)</span>, <span>(beta = 200)</span> for a coal mass. 39 stable cases from the same coalfields (Witbank) have been considered to validate the strength parameters. The simulation results of all the stable cases were showing FOS > 1. The proposed constitutive model is suitable for assessing a pillar’s time-dependent strength deterioration and creep behavior. The deterioration/yielding of the pillar is observed to be initiated from the skin/side, extending deeper into the pillar’s core with time and ultimately forming an hourglass shape. It is also observed that the FOS of the pillar decreases with time.</p></div>","PeriodicalId":698,"journal":{"name":"Mechanics of Time-Dependent Materials","volume":"28 4","pages":"2841 - 2858"},"PeriodicalIF":2.1,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140563836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}