利用摩尔-吉布森-汤普森热传导模型研究圆形微板谐振器的粘热弹性振动

IF 2.1 4区 材料科学 Q2 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
Rakhi Tiwari, Satyam Sachan, Ahmed Abouelregal, Roushan Kumar, Mohamed E. Elzayady
{"title":"利用摩尔-吉布森-汤普森热传导模型研究圆形微板谐振器的粘热弹性振动","authors":"Rakhi Tiwari,&nbsp;Satyam Sachan,&nbsp;Ahmed Abouelregal,&nbsp;Roushan Kumar,&nbsp;Mohamed E. Elzayady","doi":"10.1007/s11043-024-09699-z","DOIUrl":null,"url":null,"abstract":"<div><p>This research investigates the impact of thermoelastic coupling on thermally conducting, homogeneous, and isotropic Kelvin–Voigt-type circular microplate resonators. The study utilizes the Moore–Gibson–Thompson technique, which incorporates viscous effects. We examine the use of clamped boundary conditions and obtain analytical solutions in the Laplace-transform domain. In order to clarify the thermomechanical effects on the vibrations of a ceramic Si<sub>3</sub>N<sub>4</sub> plate resonator, we calculate numerical outcomes in the time domain by employing the inverse Laplace transform. We examine the impact of viscosity on many physical phenomena, including deflection, temperature, displacement, thermal moment in the radial direction, and radial stress. We give graphical findings that compare the results with and without the presence of viscosity. The study evaluates the precision and feasibility of the MGTE thermal-conductivity theory by comparing its numerical outcomes with well-established thermoelastic models, such as the classical theory, Lord–Shulman theory, and Green–Naghdi II and III theories. The MGTE theory showcases improved accuracy, facilitating the production of circular micro/nanoplate resonators with exceptional quality and decreased energy dissipation.</p></div>","PeriodicalId":698,"journal":{"name":"Mechanics of Time-Dependent Materials","volume":"28 3","pages":"1291 - 1311"},"PeriodicalIF":2.1000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Viscothermoelastic vibrations on circular microplate resonators using the Moore–Gibson–Thompson thermal-conductivity model\",\"authors\":\"Rakhi Tiwari,&nbsp;Satyam Sachan,&nbsp;Ahmed Abouelregal,&nbsp;Roushan Kumar,&nbsp;Mohamed E. Elzayady\",\"doi\":\"10.1007/s11043-024-09699-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This research investigates the impact of thermoelastic coupling on thermally conducting, homogeneous, and isotropic Kelvin–Voigt-type circular microplate resonators. The study utilizes the Moore–Gibson–Thompson technique, which incorporates viscous effects. We examine the use of clamped boundary conditions and obtain analytical solutions in the Laplace-transform domain. In order to clarify the thermomechanical effects on the vibrations of a ceramic Si<sub>3</sub>N<sub>4</sub> plate resonator, we calculate numerical outcomes in the time domain by employing the inverse Laplace transform. We examine the impact of viscosity on many physical phenomena, including deflection, temperature, displacement, thermal moment in the radial direction, and radial stress. We give graphical findings that compare the results with and without the presence of viscosity. The study evaluates the precision and feasibility of the MGTE thermal-conductivity theory by comparing its numerical outcomes with well-established thermoelastic models, such as the classical theory, Lord–Shulman theory, and Green–Naghdi II and III theories. The MGTE theory showcases improved accuracy, facilitating the production of circular micro/nanoplate resonators with exceptional quality and decreased energy dissipation.</p></div>\",\"PeriodicalId\":698,\"journal\":{\"name\":\"Mechanics of Time-Dependent Materials\",\"volume\":\"28 3\",\"pages\":\"1291 - 1311\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanics of Time-Dependent Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11043-024-09699-z\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Time-Dependent Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11043-024-09699-z","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了热弹性耦合对热传导、均质和各向同性开尔文-伏依格型圆形微板谐振器的影响。研究采用了包含粘性效应的摩尔-吉布森-汤普森技术。我们研究了箝位边界条件的使用,并获得了拉普拉斯变换域中的解析解。为了阐明热机械效应对 Si3N4 陶瓷板谐振器振动的影响,我们采用反拉普拉斯变换计算时域数值结果。我们研究了粘度对许多物理现象的影响,包括偏转、温度、位移、径向热力矩和径向应力。我们给出了图形结果,对存在和不存在粘性的结果进行了比较。通过将 MGTE 热导理论的数值结果与经典理论、Lord-Shulman 理论、Green-Naghdi II 和 III 理论等成熟的热弹性模型进行比较,研究评估了 MGTE 热导理论的精确性和可行性。MGTE 理论提高了精确度,有助于生产质量优异、能量耗散更小的圆形微/纳米板谐振器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Viscothermoelastic vibrations on circular microplate resonators using the Moore–Gibson–Thompson thermal-conductivity model

Viscothermoelastic vibrations on circular microplate resonators using the Moore–Gibson–Thompson thermal-conductivity model

This research investigates the impact of thermoelastic coupling on thermally conducting, homogeneous, and isotropic Kelvin–Voigt-type circular microplate resonators. The study utilizes the Moore–Gibson–Thompson technique, which incorporates viscous effects. We examine the use of clamped boundary conditions and obtain analytical solutions in the Laplace-transform domain. In order to clarify the thermomechanical effects on the vibrations of a ceramic Si3N4 plate resonator, we calculate numerical outcomes in the time domain by employing the inverse Laplace transform. We examine the impact of viscosity on many physical phenomena, including deflection, temperature, displacement, thermal moment in the radial direction, and radial stress. We give graphical findings that compare the results with and without the presence of viscosity. The study evaluates the precision and feasibility of the MGTE thermal-conductivity theory by comparing its numerical outcomes with well-established thermoelastic models, such as the classical theory, Lord–Shulman theory, and Green–Naghdi II and III theories. The MGTE theory showcases improved accuracy, facilitating the production of circular micro/nanoplate resonators with exceptional quality and decreased energy dissipation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mechanics of Time-Dependent Materials
Mechanics of Time-Dependent Materials 工程技术-材料科学:表征与测试
CiteScore
4.90
自引率
8.00%
发文量
47
审稿时长
>12 weeks
期刊介绍: Mechanics of Time-Dependent Materials accepts contributions dealing with the time-dependent mechanical properties of solid polymers, metals, ceramics, concrete, wood, or their composites. It is recognized that certain materials can be in the melt state as function of temperature and/or pressure. Contributions concerned with fundamental issues relating to processing and melt-to-solid transition behaviour are welcome, as are contributions addressing time-dependent failure and fracture phenomena. Manuscripts addressing environmental issues will be considered if they relate to time-dependent mechanical properties. The journal promotes the transfer of knowledge between various disciplines that deal with the properties of time-dependent solid materials but approach these from different angles. Among these disciplines are: Mechanical Engineering, Aerospace Engineering, Chemical Engineering, Rheology, Materials Science, Polymer Physics, Design, and others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信