物理化学学报最新文献

筛选
英文 中文
Engineering multiple optimization strategy on bismuth oxyhalide photoactive materials for efficient photoelectrochemical applications
IF 10.8 2区 化学
物理化学学报 Pub Date : 2025-02-01 DOI: 10.3866/PKU.WHXB202309047
Pengcheng Yan, Peng Wang, Jing Huang, Zhao Mo, Li Xu, Yun Chen, Yu Zhang, Zhichong Qi, Hui Xu, Henan Li
{"title":"Engineering multiple optimization strategy on bismuth oxyhalide photoactive materials for efficient photoelectrochemical applications","authors":"Pengcheng Yan, Peng Wang, Jing Huang, Zhao Mo, Li Xu, Yun Chen, Yu Zhang, Zhichong Qi, Hui Xu, Henan Li","doi":"10.3866/PKU.WHXB202309047","DOIUrl":"10.3866/PKU.WHXB202309047","url":null,"abstract":"<div><div>The photoelectrochemical (PEC) technique, as a simple solar energy conversion device, is one of the most promising solutions for addressing both environmental and energy challenges. PEC technique mainly involves the photoconversion process of photoactive materials through carrier excitation and charge transfer under light irradiation, and the active material plays a central role in the entire system. The design and synthesis of highly PEC active materials is crucial for achieving efficient PEC performance. The photoelectric conversion efficiency of photoactive materials mainly depends on broad range of light absorption response and rapid separation/transfer rate of photogenerated carriers. Common photosensitive semiconductors can be used as photoelectric active materials, including metal oxides, metal sulfides, organic small molecules and organic polymers. However, achieving a high photoelectric conversion efficiency is challenging due to the inherent limitations of using a single semiconductor material. Exploring functional composites with specific structural compositions can overcome the performance deficiencies of individual semiconductor materials. In addition, the ultraviolet region of the solar spectrum accounts for only about 5 ​%, while visible light accounts for approximately 45 ​%. The development of PEC active materials that can be driven by visible light, such as silver, bismuth, and organic polymer materials, is crucial for the commercial application of PEC technique. Due to the characteristics of bismuth oxyhalide BiOX (X ​= ​Cl, Br, I)-based materials, such as an adjustable band gap, a unique layered structure, non-toxicity, a wide light absorption range and outstanding light stability, the PEC technique based on BiOX (X ​= ​Cl, Br, I) has become a popular research topic. In this paper, the physicochemical properties of BiOX (X ​= ​Cl, Br, I)-based materials are reviewed. The methods used to modify BiOX (X ​= ​Cl, Br, I)-based materials from the perspectives of surface and interface are discussed. These modifications aim to improve the utilization rate of sunlight and inhibit the recombination of photogenerated electrons and holes. Additionally, the research progress in microstructure modulation, surface vacancy, functional group modification, metal loading, heteroatom doping and heterojunction construction is emphasized. Through various design strategies, the separation efficiency of photogenerated carriers in BiOX (X ​= ​Cl, Br, I) can be effectively enhanced, thereby improving its performance in PEC applications. The significant contributions of modified BiOX (X ​= ​Cl, Br, I) to various applications, including PEC sensing, PEC water splitting, photoelectrocatalytic degradation, CO<sub>2</sub> reduction, nitrogen fixation and photocatalytic fuel cells are described. Finally, the challenges in the aforementioned applications of BiOX (X ​= ​Cl, Br, I) materials are discussed, and the future research and practical applica","PeriodicalId":6964,"journal":{"name":"物理化学学报","volume":"41 2","pages":"Article 100014"},"PeriodicalIF":10.8,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143097010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Understanding solid-gas and solid-liquid interfaces through near ambient pressure X-ray photoelectron spectroscopy
IF 10.8 2区 化学
物理化学学报 Pub Date : 2025-02-01 DOI: 10.3866/PKU.WHXB202309036
Chongjing Liu , Yujian Xia , Pengjun Zhang , Shiqiang Wei , Dengfeng Cao , Beibei Sheng , Yongheng Chu , Shuangming Chen , Li Song , Xiaosong Liu
{"title":"Understanding solid-gas and solid-liquid interfaces through near ambient pressure X-ray photoelectron spectroscopy","authors":"Chongjing Liu ,&nbsp;Yujian Xia ,&nbsp;Pengjun Zhang ,&nbsp;Shiqiang Wei ,&nbsp;Dengfeng Cao ,&nbsp;Beibei Sheng ,&nbsp;Yongheng Chu ,&nbsp;Shuangming Chen ,&nbsp;Li Song ,&nbsp;Xiaosong Liu","doi":"10.3866/PKU.WHXB202309036","DOIUrl":"10.3866/PKU.WHXB202309036","url":null,"abstract":"<div><div>The surface of energy material is the direct place where energy storage and conversion reactions occur. Thus, the surface chemistry and the structure of the material under real reaction conditions are the key descriptors to clarify the reaction mechanism. However, such surfaces are usually immersed in gaseous or liquid environments under real reaction conditions, so it is not a simple task to identify the real physical and chemical properties of the interface under <em>in situ</em> conditions. X-ray photoelectron spectroscopy (XPS), as a surface-sensitive technique, is one of the main techniques for studying complex composition and electronic structure of material surfaces. However, due to the limited mean free path of photoelectrons in gas, liquid and solid media, the traditional XPS is confined to vacuum conditions, which poses a significant obstacle for studying solid-gas and solid-liquid interfaces under <em>in situ</em> conditions. With the introduction of differentially pumped analyzers and electrostatic lenses system, this limitation no longer restricts XPS only suitable for ultra-high vacuum conditions. With the active development of synchrotron radiation sources worldwide, near ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) offers advanced features combined with the benefits of synchrotron radiation sources. Compared to traditional X-ray source, synchrotron radiation sources have significantly higher photon flux and much smaller spot size, which enables more electrons to escape to the electron analyzer, therefore can effectively improve the signal-to-noise ratio and the maximum working pressure, and the continuous wavelength tunability of synchrotron radiation makes experimental measurements more flexible and provides more information on the surface reaction. Over the years, NAP-XPS has rapidly emerged as an influential tool for investigating various solid-gas and solid-liquid interfaces, reflecting the importance of understanding reaction mechanisms and structure-performance relationship of materials under conditions closer to practical reacting conditions, particularly in heterogeneous catalysis. Information at atomic scale can be delivered with surface and interface sensitivity by NAP-XPS in conjunction with several advanced spectroscopy and microscopy techniques. In this paper, we provide a concise overview of recent notable advancements in NAP-XPS to showcase the novel insights generated by research on solid-gas and solid-liquid interfaces in cutting-edge scientific fields. This demonstrates how the knowledge gained from NAP-XPS studies can contribute to a fundamental understanding of reaction mechanisms at a molecular level. Finally, we discuss new challenges and prospects to ensure a comprehensive understanding of this technique and, hopefully, inspire fresh ideas.</div></div>","PeriodicalId":6964,"journal":{"name":"物理化学学报","volume":"41 2","pages":"Article 100013"},"PeriodicalIF":10.8,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143097111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental and theoretical investigations of solvent polarity effect on ESIPT mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone
IF 10.8 2区 化学
物理化学学报 Pub Date : 2025-02-01 DOI: 10.3866/PKU.WHXB202309027
Yanglin Jiang , Mingqing Chen , Min Liang , Yige Yao , Yan Zhang , Peng Wang , Jianping Zhang
{"title":"Experimental and theoretical investigations of solvent polarity effect on ESIPT mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone","authors":"Yanglin Jiang ,&nbsp;Mingqing Chen ,&nbsp;Min Liang ,&nbsp;Yige Yao ,&nbsp;Yan Zhang ,&nbsp;Peng Wang ,&nbsp;Jianping Zhang","doi":"10.3866/PKU.WHXB202309027","DOIUrl":"10.3866/PKU.WHXB202309027","url":null,"abstract":"<div><div>Excited-state intramolecular proton transfer (ESIPT) is a fundamental photoreaction of significant importance in both chemical and biological systems. This phenomenon typically occurs in chromophores featuring intramolecular hydrogen bonding. Among the molecules undergoing ESIPT, 3-hydroxyflavone derivatives (3-HFs) have garnered significant attention due to their natural origins and environmentally responsive fluorescence properties. A particular 3-HF compound, 4′-<em>N</em>,<em>N</em>-diethylamino-3-hydroxybenzoflavone (D-HBF), distinguished by its extended <em>π</em>-system and red-shifted electronic absorption, has recently been identified as a potent fluorescent probe highly sensitive to changes in environmental polarity. In this study, we systematically explored the ESIPT reaction mechanism of D-HBF in three aprotic solvents: cyclohexane, diethyl ether, and tetrahydrofuran, each possessing varying polarities. Our investigation involved a combination of spectroscopic and theoretical methods. In all three solvents, we observed the characteristic dual emission bands associated with ESIPT, with the intensity ratio of these bands being influenced by the solvent. As solvent polarity increased, we noted a decrease in the rates of both the forward and reverse proton transfer (PT) reactions based on our analysis of fluorescent kinetics. However, the reverse PT was favored. Through density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations of bond lengths and bond angles of the intramolecular hydrogen bond in these solvents, we confirmed that the ESIPT reaction in D-HBF is driven by the strengthening of the excited-state hydrogen bond. Notably, upon increasing solvent polarity, the intramolecular hydrogen bonds in the excited <em>N∗</em> state weakened, as evidenced by the up-shifted IR absorption frequency of the O–H stretching mode in the <em>S</em><sub>1</sub> state. Electron intensity analysis of frontier orbitals revealed characteristic intramolecular charge transfer (ICT) occurring in D-HBF upon photoexcitation, attributable to the introduction of a strong electron-donating group at the 4′ position (4′-<em>N</em>,<em>N</em>-diethylamino-). Calculations of potential energy curves for the <em>S</em><sub>0</sub> and <em>S</em><sub>1</sub> states confirmed that the PT process tends to occur in the <em>S</em><sub>1</sub> state rather than the <em>S</em><sub>0</sub> state, and a more polar solvent generates a more significant potential barrier, hindering the corresponding ESIPT reaction. An analysis of the Gibbs free energy of ESIPT further confirmed that increasing solvent polarity favors the equilibrium shifting toward the <em>N∗</em> state. This research lays the foundation for potential future applications of D-HBF as a biological fluorescent probe sensitive to environmental polarity.</div></div>","PeriodicalId":6964,"journal":{"name":"物理化学学报","volume":"41 2","pages":"Article 100012"},"PeriodicalIF":10.8,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143096999","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Epitaxial growth of nonlayered 2D MnTe nanosheets with thickness-tunable conduction for p-type field effect transistor and superior contact electrode
IF 10.8 2区 化学
物理化学学报 Pub Date : 2025-02-01 DOI: 10.3866/PKU.WHXB202310029
Mengfei He , Chao Chen , Yue Tang , Si Meng , Zunfa Wang , Liyu Wang , Jiabao Xing , Xinyu Zhang , Jiahui Huang , Jiangbo Lu , Hongmei Jing , Xiangyu Liu , Hua Xu
{"title":"Epitaxial growth of nonlayered 2D MnTe nanosheets with thickness-tunable conduction for p-type field effect transistor and superior contact electrode","authors":"Mengfei He ,&nbsp;Chao Chen ,&nbsp;Yue Tang ,&nbsp;Si Meng ,&nbsp;Zunfa Wang ,&nbsp;Liyu Wang ,&nbsp;Jiabao Xing ,&nbsp;Xinyu Zhang ,&nbsp;Jiahui Huang ,&nbsp;Jiangbo Lu ,&nbsp;Hongmei Jing ,&nbsp;Xiangyu Liu ,&nbsp;Hua Xu","doi":"10.3866/PKU.WHXB202310029","DOIUrl":"10.3866/PKU.WHXB202310029","url":null,"abstract":"<div><div>Two-dimensional (2D) transition-metal dichalcogenides (TMDs) exhibit diverse structures, encompassing a broad spectrum of electronic types ranging from metal, semiconductor, to insulator and topological insulator. They hold immense potential for both Moore and more-than-Moore device applications. Among them, manganese telluride (MnTe), an emerging nonlayered 2D material, has garnered considerable attention due to its exceptional properties and significant application potential in next-generation electronic and optoelectronic devices. However, the controllable synthesis of ultra-thin 2D MnTe remains a great challenge, which hindering the comprehensive exploration of its fundamental properties and potential applications. In this study, we present the synthesis of large-area MnTe nanosheets through chemical vapor deposition growth, showcasing its thickness-dependent properties and device applications. By increasing the growth temperature from 500 to 750 ​°C, the MnTe nanosheets’ thickness transitions from thin-layer to a thick flake, the domain size increases from 10 to 125 ​μm, the morphology changes from triangle to hexagon, culminating in a highly symmetrical round shape. Structural characterization and second harmonic generation measurements reveal that the obtained MnTe nanosheets exhibit high crystallization quality and superior second-order optical nonlinearity. The field effect transistor (FET) constructed with thin-layer MnTe demonstrates a p-type semiconductor characteristic, transitioning to a semimetal feature as the thickness increases to a thick flake. Leveraging these thickness-dependent electrical conduction transition features, we explore diverse applications of MnTe with varying thicknesses. The semiconductive thin-layer MnTe, serving as the photosensitive channel in a device, achieves superior photoresponse, showcasing considerable potential for photodetection appliations. The semimetallic thick-layer MnTe, acting as the contact electrode in a MoS<sub>2</sub> FET, significantly enhances device performance, with carrier mobility increasing from 12.76 ​cm<sup>2</sup> ​V<sup>−1</sup> ​s<sup>−1</sup> (Au contact) to 47.34 ​cm<sup>2</sup> ​V<sup>−1</sup> ​s<sup>−1</sup> (MnTe contact). This work lays the foundation for the controllable synthesis of nonlayered 2D MnTe and provides insights into its prospective development for constructing innovative electronic and optoelectronic devices.</div></div>","PeriodicalId":6964,"journal":{"name":"物理化学学报","volume":"41 2","pages":"Article 100016"},"PeriodicalIF":10.8,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143141050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Insights into the greatly improved catalytic performance of N-doped BiOBr for CO2 photoreduction
IF 10.8 2区 化学
物理化学学报 Pub Date : 2025-01-28 DOI: 10.1016/j.actphy.2025.100055
Xianghai Song , Xiaoying Liu , Zhixiang Ren , Xiang Liu , Mei Wang , Yuanfeng Wu , Weiqiang Zhou , Zhi Zhu , Pengwei Huo
{"title":"Insights into the greatly improved catalytic performance of N-doped BiOBr for CO2 photoreduction","authors":"Xianghai Song ,&nbsp;Xiaoying Liu ,&nbsp;Zhixiang Ren ,&nbsp;Xiang Liu ,&nbsp;Mei Wang ,&nbsp;Yuanfeng Wu ,&nbsp;Weiqiang Zhou ,&nbsp;Zhi Zhu ,&nbsp;Pengwei Huo","doi":"10.1016/j.actphy.2025.100055","DOIUrl":"10.1016/j.actphy.2025.100055","url":null,"abstract":"<div><div>Photocatalytic carbon dioxide (CO<sub>2</sub>) reduction represents a hopeful approach to addressing global energy and environmental issues. The quest for catalysts that demonstrate both high activity and selectivity for CO<sub>2</sub> conversion has attracted significant attention. In this study, ultrathin N-doped BiOBr was synthesized using a simple straightforward method. Systematic experimental results indicated that N-doping reduced the thickness of the BiOBr nanosheets and increased their specific surface area. Moreover, the efficiency of photogenerated charge carrier migration and the CO<sub>2</sub> adsorption capacity were significantly enhanced, contributing to improved CO<sub>2</sub> photoreduction performance. Experimental results showed that the 2N-BiOBr exhibited the best catalytic performance, with a CO evolution rate of 18.28 ​μmol·g<sup>−1</sup>·h<sup>−1</sup> and nearly 100% CO selectivity in water, which was three times higher than that of pure BiOBr. The potential photocatalytic mechanism was investigated using <em>in situ</em> FTIR analysis and DFT simulations. Mechanistic studies revealed that N atoms replaced O atoms as adsorption centers, enhancing the strong adsorption selectivity towards CO<sub>2</sub> over O–H in BiOBr and facilitating the formation of key reaction intermediates. This study provides new perspectives on the creation and developmen of effective photocatalytic materials, offering theoretical support for the application of photocatalytic technology in energy and environmental science.</div></div>","PeriodicalId":6964,"journal":{"name":"物理化学学报","volume":"41 6","pages":"Article 100055"},"PeriodicalIF":10.8,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143428894","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME
IF 10.8 2区 化学
物理化学学报 Pub Date : 2025-01-25 DOI: 10.1016/j.actphy.2025.100054
Liuyun Chen , Wenju Wang , Tairong Lu , Xuan Luo , Xinling Xie , Kelin Huang , Shanli Qin , Tongming Su , Zuzeng Qin , Hongbing Ji
{"title":"Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME","authors":"Liuyun Chen ,&nbsp;Wenju Wang ,&nbsp;Tairong Lu ,&nbsp;Xuan Luo ,&nbsp;Xinling Xie ,&nbsp;Kelin Huang ,&nbsp;Shanli Qin ,&nbsp;Tongming Su ,&nbsp;Zuzeng Qin ,&nbsp;Hongbing Ji","doi":"10.1016/j.actphy.2025.100054","DOIUrl":"10.1016/j.actphy.2025.100054","url":null,"abstract":"<div><div>Plasma-activated heterogeneous catalysis is a promising strategy for catalytic CO<sub>2</sub> hydrogenation under mild conditions. In this study, pore structures with deep pore channels were constructed on Al<sub>2</sub>O<sub>3</sub>-<em>x via</em> a soft template method, and Cu/Al<sub>2</sub>O<sub>3</sub>-<em>x</em> was prepared by an impregnation method, with Al<sub>2</sub>O<sub>3</sub>-<em>x</em> serving as the support for plasma-catalyzed CO<sub>2</sub> hydrogenation to dimethyl ether (DME). Cu/Al<sub>2</sub>O<sub>3</sub>-0.75/HZSM-5 demonstrated a high performance and discharge efficiency for plasma-catalyzed CO<sub>2</sub> hydrogenation. The CO<sub>2</sub> conversion and DME yield for plasma-catalyzed CO<sub>2</sub> hydrogenation on Cu/Al<sub>2</sub>O<sub>3</sub>-0.75/HZSM-5 reached 21.98% and 9.83%, respectively, with selectivities for CO, CH<sub>3</sub>OH, and DME on Cu/Al<sub>2</sub>O<sub>3</sub>-0.75/HZSM-5 of 25.39%, 29.89%, and 44.72%, respectively. The deep pore structures on Al<sub>2</sub>O<sub>3</sub>-<em>x</em> serve as Cu loading sites, and the confinement effect of the pores enhances the metal-support interaction and Cu metal dispersion. More abundant and stronger Brønsted basic and Lewis acidic sites facilitate the activation and hydrogenation of CO<sub>2</sub>. Notably, the electric field formed by Cu sites anchored in the deep pore channel structures is conducive to guiding the activated plasma CO<sub>2</sub> intermediates into the difficult-to-access pores for hydrogenation. Hydrogenation of the plasma-activated CO<sub>2</sub> intermediates in the deep pore channels is crucial for improving plasma-catalyzed CO<sub>2</sub> hydrogenation to DME.</div></div>","PeriodicalId":6964,"journal":{"name":"物理化学学报","volume":"41 6","pages":"Article 100054"},"PeriodicalIF":10.8,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143428895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics
IF 10.8 2区 化学
物理化学学报 Pub Date : 2025-01-21 DOI: 10.1016/j.actphy.2025.100052
Yadan Luo , Hao Zheng , Xin Li , Fengmin Li , Hua Tang , Xilin She
{"title":"Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics","authors":"Yadan Luo ,&nbsp;Hao Zheng ,&nbsp;Xin Li ,&nbsp;Fengmin Li ,&nbsp;Hua Tang ,&nbsp;Xilin She","doi":"10.1016/j.actphy.2025.100052","DOIUrl":"10.1016/j.actphy.2025.100052","url":null,"abstract":"<div><div>Photocatalytic microplastic (MP) degradation <em>via</em> reactive oxygen species (ROS) is a considered environmentally friendly and sustainable approach for eliminating MP pollution in aquatic environments. However, it faces challenges due to the low migration and rapid recombination efficiency of charge carriers in photocatalysts. Herein, oxygen and sulfur co-doped carbon nitride (OSCN) nanosheets were synthesized through thermal polymerization coupled with a thermosolvent process. The O and S co-doping can reduce the bandgap and improve the light response of carbon nitride (C<sub>3</sub>N<sub>4</sub>). Meanwhile, O/S dopants effectively improve the delocalization of electron distribution, leading to increased carrier separation capacity, thereby promoting the formation of ROS and enhancing photocatalytic performance. Compared to C<sub>3</sub>N<sub>4</sub>, OSCN demonstrated significantly higher photocatalytic degradation and mineralization rates for MPs, including polyethylene (PE, traditional petroleum-based MPs) and polylactic acid (PLA, biodegradable bio-based MPs). Specifically, the mass loss of PE and PLA increased by 32.8 ​% and 34.1 ​%, respectively. Notably, <sup>•</sup>OH and <sup>1</sup>O<sub>2</sub> generated by OSCN synergistically catalyzed the degradation of PE, while <sup>•</sup>OH was the primary radical triggering the photolysis and hydrolysis of PLA. This study holds significant implications for the application of photocatalysis technology in the remediation of MP pollution in aquatic environments.</div></div>","PeriodicalId":6964,"journal":{"name":"物理化学学报","volume":"41 6","pages":"Article 100052"},"PeriodicalIF":10.8,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143428896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adjusting the electronic structure of Keggin-type polyoxometalates to construct S-scheme heterojunction for photocatalytic hydrogen evolution
IF 10.8 2区 化学
物理化学学报 Pub Date : 2025-01-20 DOI: 10.1016/j.actphy.2025.100051
Xinyu Miao , Hao Yang , Jie He , Jing Wang , Zhiliang Jin
{"title":"Adjusting the electronic structure of Keggin-type polyoxometalates to construct S-scheme heterojunction for photocatalytic hydrogen evolution","authors":"Xinyu Miao ,&nbsp;Hao Yang ,&nbsp;Jie He ,&nbsp;Jing Wang ,&nbsp;Zhiliang Jin","doi":"10.1016/j.actphy.2025.100051","DOIUrl":"10.1016/j.actphy.2025.100051","url":null,"abstract":"<div><div>The sluggish electron migration rate and pronounced electron-hole recombination, pose significant obstacles to achieving high photocatalytic efficiency. The utilization of multiple catalysts for the construction of heterojunctions can effectively enhance charge separation. A series of Keggin-type hollow dodecahedral polyoxometalates were prepared <em>via</em> hydrothermal synthesis, and their molecular orbitals were modified through the addition of metal elements. The incorporation of metal elements modulated the electronic structure of polyoxometalates, effectively enhancing the electron aggregation capability of polyoxometalates. Single-component catalysts often face serious hole-electron recombination. In order to solve this problem, the scheme of constructing heterojunction is proposed to improve the electron transport efficiency. By immobilizing ZnCdS nanoparticles onto the polyoxometalate surface, the heterojunction architecture was engineered to significantly enhance the interfacial charge transfer capability. Density Functional Theory (DFT) calculations and the experimental results indicate that the modulation of metallic components renders the polyoxometalate a more favorable energy-level orbital. The catalytic mechanism of ZnCdS and KMoP S-scheme heterojunction was also verified. The formation of S-scheme heterojunctions further improves the electron transfer efficiency compared to other traditional heterojunctions, achieving efficient utilization of photo generated electrons and holes. Additionally, the S-scheme heterojunction shifts the catalystʼs <em>d</em>-band center closer to the Fermi level, thereby improving electrical conductivity. This article provides a new approach for energy level regulation of polyoxometalates and the design of S-scheme heterojunctions.</div></div>","PeriodicalId":6964,"journal":{"name":"物理化学学报","volume":"41 6","pages":"Article 100051"},"PeriodicalIF":10.8,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143428898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rationally designed ZnFe1.2Co0.8O4/BiVO4 S-scheme heterojunction with spin-polarization for the elimination of antibiotic
IF 10.8 2区 化学
物理化学学报 Pub Date : 2025-01-14 DOI: 10.1016/j.actphy.2025.100050
Jinwang Wu , Qijing Xie , Chengliang Zhang , Haifeng Shi
{"title":"Rationally designed ZnFe1.2Co0.8O4/BiVO4 S-scheme heterojunction with spin-polarization for the elimination of antibiotic","authors":"Jinwang Wu ,&nbsp;Qijing Xie ,&nbsp;Chengliang Zhang ,&nbsp;Haifeng Shi","doi":"10.1016/j.actphy.2025.100050","DOIUrl":"10.1016/j.actphy.2025.100050","url":null,"abstract":"<div><div>Recently, the regulation of electronic spin polarization has attracted considerable interest as an effective strategy to mitigate the rapid recombination of photo-generated charges. However, current research predominantly targets individual photocatalysts, where the efficiency of charge separation still has significant room for improvement. Herein, a ZnFe<sub>1.2</sub>Co<sub>0.8</sub>O<sub>4</sub> (ZFCO) and BiVO<sub>4</sub> (BVO) S-scheme heterojunction was developed, which synergistically promoted charge separation through the S-scheme heterojunction and spin polarization, and further enhanced the photocatalytic performance in removing organic pollutants under an external magnetic field. Experimental results revealed that under sole light irradiation, ZB-1.5 (ZFCO : BVO ​= ​3 : 2) demonstrated optimal performance, with a reaction rate constant (<em>k</em>) for tetracycline (TC) degradation of 0.0146 ​min<sup>−1</sup>. Under light irradiation and magnetic field conditions, the reaction rate constant (<em>k</em>) of ZB-1.5 for TC degradation increased to 0.0175 ​min<sup>−1</sup>, indicating enhanced photocatalytic performance. DFT calculations indicated that ZFCO exhibited the spin polarization. Photoluminescence measurements demonstrated that the S-scheme heterojunction structure improved the charge separation efficiency. In addition, possible degradation pathways and toxicity were assessed, indicating successful detoxification. This work provides some useful insights into utilizing S-scheme heterojunctions to develop photocatalysts with efficient separation of photo-generated charges.</div></div>","PeriodicalId":6964,"journal":{"name":"物理化学学报","volume":"41 5","pages":"Article 100050"},"PeriodicalIF":10.8,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143102411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Research on Cu-based and Pt-based catalysts for hydrogen production through methanol steam reforming
IF 10.8 2区 化学
物理化学学报 Pub Date : 2025-01-13 DOI: 10.1016/j.actphy.2025.100049
Xue Liu , Lipeng Wang , Luling Li , Kai Wang , Wenju Liu , Biao Hu , Daofan Cao , Fenghao Jiang , Junguo Li , Ke Liu
{"title":"Research on Cu-based and Pt-based catalysts for hydrogen production through methanol steam reforming","authors":"Xue Liu ,&nbsp;Lipeng Wang ,&nbsp;Luling Li ,&nbsp;Kai Wang ,&nbsp;Wenju Liu ,&nbsp;Biao Hu ,&nbsp;Daofan Cao ,&nbsp;Fenghao Jiang ,&nbsp;Junguo Li ,&nbsp;Ke Liu","doi":"10.1016/j.actphy.2025.100049","DOIUrl":"10.1016/j.actphy.2025.100049","url":null,"abstract":"<div><div>Methanol steam reforming (MSR) is a critical pathway for on-board hydrogen production from methanol, playing a significant role in clean energy applications. The catalytic performance in MSR reactions directly influences hydrogen yield and byproduct composition, with Cu-based and Pt-based catalysts extensively studied for their high efficiency. The catalytic mechanism primarily involves the cleavage of C–H and O–H bonds in methanol and water molecules. The activity of Cu-based catalysts depends on the ratio and synergistic interaction of Cu<sup>0</sup> and Cu<sup>+</sup> ​active sites, while Pt-based catalysts operate through Pt<sup>0</sup>, Pt<sup>δ+</sup> or Pt<sup>2+</sup> active sites, in conjunction with oxygen vacancies. However, the electron transfer and interaction mechanisms between active metals and supports remain contentious, impacting the metal oxidation states, adsorption sites, and reaction pathway selectivity. This is particularly evident in the pathways for methanol dehydrogenation and intermediate product formation (e.g., formaldehyde, formic acid, and methyl formate), which lack a unified understanding. This review systematically examines the unitary and synergistic roles of Cu<sup>0</sup> and Cu<sup>+</sup> ​sites, explores the direct and synergistic pathways of Pt-based catalysts, and analyzes the effects of additives such as In<sub>2</sub>O<sub>3</sub> on Pt site modulation and oxygen vacancy generation. By integrating catalytic performance evaluations with mechanistic insights, strategies are proposed to enhance catalyst activity and stability. This comprehensive review not only advances the understanding of MSR mechanisms but also provides a theoretical foundation and research direction for the development of high-performance catalysts for on-board hydrogen production.</div></div>","PeriodicalId":6964,"journal":{"name":"物理化学学报","volume":"41 5","pages":"Article 100049"},"PeriodicalIF":10.8,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143427747","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信