Optimizing interfacial electric fields in carbon nitride nanosheet/spherical conjugated polymer S-scheme heterojunction for hydrogen evolution

IF 10.8 2区 化学 Q1 CHEMISTRY, PHYSICAL
Fanpeng Meng , Fei Zhao , Jingkai Lin , Jinsheng Zhao , Huayang Zhang , Shaobin Wang
{"title":"Optimizing interfacial electric fields in carbon nitride nanosheet/spherical conjugated polymer S-scheme heterojunction for hydrogen evolution","authors":"Fanpeng Meng ,&nbsp;Fei Zhao ,&nbsp;Jingkai Lin ,&nbsp;Jinsheng Zhao ,&nbsp;Huayang Zhang ,&nbsp;Shaobin Wang","doi":"10.1016/j.actphy.2025.100095","DOIUrl":null,"url":null,"abstract":"<div><div>Designing heterojunctions based on carbon nitride offers a promising pathway for enhancing photocatalytic efficiency. This study develops an all-organic S-scheme metal-free heterojunction uniquely composed of carbon nitride nanosheets (GCNNS) and a donor–acceptor conjugated polymer, poly p-aminobenzylidene-so-aniline (PASO), synthesized through a simple yet effective ball-milling technique. This heterojunction demonstrates excellent photocatalytic efficiency for hydrogen (H<sub>2</sub>) evolution. The optimized GCNNS/PASO-10 sample attains an H<sub>2</sub> evolution rate of 10.12 ​mmol·g<sup>−1</sup>·h<sup>−1</sup>, which is about 5.9 times and 19.5 times greater than those of pure GCNNS and PASO, respectively. This improvement is due to the unique interfacial bonding, increased visible-light absorption, and efficient charge carrier separation facilitated by a strong internal electric field within the S-scheme. Theoretical calculations and characterization reveal that this heterojunction's S-scheme mechanism optimally aligns energy bands and promotes spatial charge separation, driving superior photocatalytic activity. This work presents the unique advantage of all-organic materials for heterojunction construction and provides insights into designing advanced S-scheme systems for sustainable energy conversion.</div></div>","PeriodicalId":6964,"journal":{"name":"物理化学学报","volume":"41 8","pages":"Article 100095"},"PeriodicalIF":10.8000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"物理化学学报","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1000681825000517","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Designing heterojunctions based on carbon nitride offers a promising pathway for enhancing photocatalytic efficiency. This study develops an all-organic S-scheme metal-free heterojunction uniquely composed of carbon nitride nanosheets (GCNNS) and a donor–acceptor conjugated polymer, poly p-aminobenzylidene-so-aniline (PASO), synthesized through a simple yet effective ball-milling technique. This heterojunction demonstrates excellent photocatalytic efficiency for hydrogen (H2) evolution. The optimized GCNNS/PASO-10 sample attains an H2 evolution rate of 10.12 ​mmol·g−1·h−1, which is about 5.9 times and 19.5 times greater than those of pure GCNNS and PASO, respectively. This improvement is due to the unique interfacial bonding, increased visible-light absorption, and efficient charge carrier separation facilitated by a strong internal electric field within the S-scheme. Theoretical calculations and characterization reveal that this heterojunction's S-scheme mechanism optimally aligns energy bands and promotes spatial charge separation, driving superior photocatalytic activity. This work presents the unique advantage of all-organic materials for heterojunction construction and provides insights into designing advanced S-scheme systems for sustainable energy conversion.

Abstract Image

优化氮化碳纳米片/球形共轭聚合物s型异质结析氢界面电场
设计基于氮化碳的异质结为提高光催化效率提供了一条很有前途的途径。本研究开发了一种由氮化碳纳米片(GCNNS)和供体-受体共轭聚合物聚对氨基苄基苯胺(PASO)组成的全有机S-scheme无金属异质结,该异质结通过简单而有效的球磨技术合成。这种异质结表现出了良好的氢(H2)演化光催化效率。优化后的GCNNS/PASO-10样品的H2析出速率为10.12 mmol·g−1·h−1,分别是纯GCNNS和PASO样品的5.9倍和19.5倍。这种改进是由于独特的界面键合,增加的可见光吸收,以及s方案中强大的内部电场促进了有效的载流子分离。理论计算和表征表明,该异质结的S-scheme机制优化排列能带,促进空间电荷分离,驱动优越的光催化活性。这项工作展示了全有机材料在异质结构建中的独特优势,并为设计先进的s方案系统提供了可持续能量转换的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
物理化学学报
物理化学学报 化学-物理化学
CiteScore
16.60
自引率
5.50%
发文量
9754
审稿时长
1.2 months
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信