Fanpeng Meng , Fei Zhao , Jingkai Lin , Jinsheng Zhao , Huayang Zhang , Shaobin Wang
{"title":"Optimizing interfacial electric fields in carbon nitride nanosheet/spherical conjugated polymer S-scheme heterojunction for hydrogen evolution","authors":"Fanpeng Meng , Fei Zhao , Jingkai Lin , Jinsheng Zhao , Huayang Zhang , Shaobin Wang","doi":"10.1016/j.actphy.2025.100095","DOIUrl":null,"url":null,"abstract":"<div><div>Designing heterojunctions based on carbon nitride offers a promising pathway for enhancing photocatalytic efficiency. This study develops an all-organic S-scheme metal-free heterojunction uniquely composed of carbon nitride nanosheets (GCNNS) and a donor–acceptor conjugated polymer, poly p-aminobenzylidene-so-aniline (PASO), synthesized through a simple yet effective ball-milling technique. This heterojunction demonstrates excellent photocatalytic efficiency for hydrogen (H<sub>2</sub>) evolution. The optimized GCNNS/PASO-10 sample attains an H<sub>2</sub> evolution rate of 10.12 mmol·g<sup>−1</sup>·h<sup>−1</sup>, which is about 5.9 times and 19.5 times greater than those of pure GCNNS and PASO, respectively. This improvement is due to the unique interfacial bonding, increased visible-light absorption, and efficient charge carrier separation facilitated by a strong internal electric field within the S-scheme. Theoretical calculations and characterization reveal that this heterojunction's S-scheme mechanism optimally aligns energy bands and promotes spatial charge separation, driving superior photocatalytic activity. This work presents the unique advantage of all-organic materials for heterojunction construction and provides insights into designing advanced S-scheme systems for sustainable energy conversion.</div></div>","PeriodicalId":6964,"journal":{"name":"物理化学学报","volume":"41 8","pages":"Article 100095"},"PeriodicalIF":10.8000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"物理化学学报","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1000681825000517","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Designing heterojunctions based on carbon nitride offers a promising pathway for enhancing photocatalytic efficiency. This study develops an all-organic S-scheme metal-free heterojunction uniquely composed of carbon nitride nanosheets (GCNNS) and a donor–acceptor conjugated polymer, poly p-aminobenzylidene-so-aniline (PASO), synthesized through a simple yet effective ball-milling technique. This heterojunction demonstrates excellent photocatalytic efficiency for hydrogen (H2) evolution. The optimized GCNNS/PASO-10 sample attains an H2 evolution rate of 10.12 mmol·g−1·h−1, which is about 5.9 times and 19.5 times greater than those of pure GCNNS and PASO, respectively. This improvement is due to the unique interfacial bonding, increased visible-light absorption, and efficient charge carrier separation facilitated by a strong internal electric field within the S-scheme. Theoretical calculations and characterization reveal that this heterojunction's S-scheme mechanism optimally aligns energy bands and promotes spatial charge separation, driving superior photocatalytic activity. This work presents the unique advantage of all-organic materials for heterojunction construction and provides insights into designing advanced S-scheme systems for sustainable energy conversion.