Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4

IF 10.8 2区 化学 Q1 CHEMISTRY, PHYSICAL
Jingping Li, Suding Yan, Jiaxi Wu, Qiang Cheng, Kai Wang
{"title":"Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4","authors":"Jingping Li,&nbsp;Suding Yan,&nbsp;Jiaxi Wu,&nbsp;Qiang Cheng,&nbsp;Kai Wang","doi":"10.1016/j.actphy.2025.100104","DOIUrl":null,"url":null,"abstract":"<div><div>With the rapid development of new energy industries, the utilization of waste batteries has attracted the attention of researchers. Developing a hydrogen peroxide photosynthesis system with battery recycling materials as photocatalysts presents a significant challenge. In this study, an ultrasonic self-assembly technique is employed to integrate LiFePO<sub>4</sub> (LFPO) nanoparticles, derived from spent batteries, with g-C<sub>3</sub>N<sub>4</sub> (CN) nanosheets, thereby creating an inorganic/organic S-scheme photocatalyst for the production of H<sub>2</sub>O<sub>2</sub>. <em>In situ</em> analyses using X-ray photoelectron spectroscopy (XPS) and Kelvin probe force microscopy (KPFM) demonstrate that the interaction between LFPO and CN facilitates the development of an internal electric field (IEF), which in turn gives rise to a distinctive S-scheme charge transfer mechanism. Combining electron spin resonance spectroscopy, radical-trapping experiments, and <em>in situ</em> DRIFTS spectra, three pathways for H<sub>2</sub>O<sub>2</sub> formation are identified. Benefited from enhanced carrier separation, strong redox power, and multichannel H<sub>2</sub>O<sub>2</sub> formation, the optimal composite shows an impressive H<sub>2</sub>O<sub>2</sub>-production rate of 3.22 mol g<sup>−1</sup> h<sup>−1</sup> under simulated solar irradiation. This research provides a potential method to investigate a sustainable H<sub>2</sub>O<sub>2</sub> photosynthesis pathway by designing S-scheme heterojunctions from spent battery materials.</div></div>","PeriodicalId":6964,"journal":{"name":"物理化学学报","volume":"41 9","pages":"Article 100104"},"PeriodicalIF":10.8000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"物理化学学报","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1000681825000608","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

With the rapid development of new energy industries, the utilization of waste batteries has attracted the attention of researchers. Developing a hydrogen peroxide photosynthesis system with battery recycling materials as photocatalysts presents a significant challenge. In this study, an ultrasonic self-assembly technique is employed to integrate LiFePO4 (LFPO) nanoparticles, derived from spent batteries, with g-C3N4 (CN) nanosheets, thereby creating an inorganic/organic S-scheme photocatalyst for the production of H2O2. In situ analyses using X-ray photoelectron spectroscopy (XPS) and Kelvin probe force microscopy (KPFM) demonstrate that the interaction between LFPO and CN facilitates the development of an internal electric field (IEF), which in turn gives rise to a distinctive S-scheme charge transfer mechanism. Combining electron spin resonance spectroscopy, radical-trapping experiments, and in situ DRIFTS spectra, three pathways for H2O2 formation are identified. Benefited from enhanced carrier separation, strong redox power, and multichannel H2O2 formation, the optimal composite shows an impressive H2O2-production rate of 3.22 mol g−1 h−1 under simulated solar irradiation. This research provides a potential method to investigate a sustainable H2O2 photosynthesis pathway by designing S-scheme heterojunctions from spent battery materials.
LiFePO4改善过氧化氢在无机/有机s型光催化剂上的光合作用
随着新能源产业的快速发展,废旧电池的利用问题引起了研究人员的关注。以电池回收材料为光催化剂开发过氧化氢光合作用系统是一个重大挑战。本研究采用超声自组装技术将废电池中提取的LiFePO4 (LFPO)纳米颗粒与g-C3N4 (CN)纳米片整合,从而制备出用于生产H2O2的无机/有机S-scheme光催化剂。利用x射线光电子能谱(XPS)和开尔文探针力显微镜(KPFM)的原位分析表明,LFPO和CN之间的相互作用促进了内部电场(IEF)的发展,从而产生了独特的S-scheme电荷转移机制。结合电子自旋共振光谱、自由基捕获实验和原位漂移光谱,确定了H2O2形成的三种途径。在模拟太阳照射下,优化后的复合材料的H2O2产率为3.22 mol g−1 h−1,具有较强的载流子分离能力、较强的氧化还原能力和多通道H2O2生成能力。本研究为利用废旧电池材料设计S-scheme异质结研究可持续的H2O2光合作用途径提供了一种潜在的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
物理化学学报
物理化学学报 化学-物理化学
CiteScore
16.60
自引率
5.50%
发文量
9754
审稿时长
1.2 months
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信