Kinematics and Physics of Celestial Bodies最新文献

筛选
英文 中文
Electrical Conductivity and Magnetic Permeability of Magnetohydrodynamic Turbulent Plasma of the Sun 太阳磁流体湍动等离子体的导电性和磁导率
IF 0.5 4区 物理与天体物理
Kinematics and Physics of Celestial Bodies Pub Date : 2024-06-17 DOI: 10.3103/S088459132403005X
V. N. Krivodubskij
{"title":"Electrical Conductivity and Magnetic Permeability of Magnetohydrodynamic Turbulent Plasma of the Sun","authors":"V. N. Krivodubskij","doi":"10.3103/S088459132403005X","DOIUrl":"10.3103/S088459132403005X","url":null,"abstract":"<p>According to classical magnetohydrodynamics, the magnetic fields on the Sun are characterized by huge theoretically calculated time intervals of their ohmic dissipation due to the high inductance caused by the large size of the fields and the high gas kinetic electrical conductivity of the plasma. This is in striking contrast to the observed rapid changes in the structure of solar magnetism. To solve such a contradiction, it becomes relevant to search for new methods of studying magnetized plasma. Research efforts to consider turbulent motions in the plasma ended with the creation of macroscopic magnetohydrodynamics (MHD), within which substantial decreases in the electrical conductivity and magnetic permeability leading to a decrease in the calculated time of reconstruction of global magnetic fields are found. This study aims at calculating the coefficients of turbulent electrical conductivity and turbulent magnetic permeability of the solar plasma and analyzing changes in the spatiotemporal evolution of the global magnetism of the Sun considering these parameters. Macroscopic MHD methods are used for studying the behavior of global electromagnetic fields and hydrodynamic motions in turbulent plasma. For models of the photosphere and convection zone of the Sun, the distributions of the following parameters along the solar radius are calculated: coefficients of kinematic (ν), magnetic (ν<sub>m</sub>), and turbulent (ν<sub>T</sub>) viscosities; hydrodynamic (Re) and magnetic (Rm) Reynolds numbers; gas kinetic (σ) and turbulent (σ<sub>T</sub>) electrical conductivities; and turbulent magnetic permeability μ<sub>T</sub>. The theoretically calculated parameters have the following values: ν = 0.2–10 cm<sup>2</sup>/s; ν<sub>m</sub> = 6 × 10<sup>8</sup>–8 × 10<sup>2</sup> cm<sup>2</sup>/s; ν<sub>T</sub> = 10<sup>11</sup>–10<sup>13</sup> cm<sup>2</sup>/s; Re = 5 × 10<sup>11</sup>–5 × 10<sup>13</sup>; Rm = 10<sup>4</sup>–10<sup>10</sup>; σ = 10<sup>11</sup>–4 × 10<sup>16</sup> CGS; σ<sub>T</sub> = 10<sup>9</sup>–4 × 10<sup>11</sup> CGS; μ<sub>T</sub> = 10<sup>–2</sup>–4 × 10<sup>–5</sup>. It is essential that σ<sub>T</sub> <span>( ll )</span> σ and μ<sub>T</sub> <span>( ll )</span> 1. Calculated turbulent magnetic diffusion <i>D</i><sub>T</sub> = <i>c</i><sup>2</sup>/4πσ<sub>T</sub>μ<sub>T</sub> turned out to be four to nine orders of magnitude higher than magnetic viscosity coefficient ν<sub>m</sub> = <i>c</i><sup>2</sup>/4πσ, which is responsible for the ohmic dissipation of magnetic fields. As a result, it becomes possible to theoretically explain the observed rapid reconstruction of magnetism on the Sun. We have revealed the radial inhomogeneity of turbulent viscosity ν<sub>T</sub> and condition μ<sub>T</sub> <span>( ll )</span> 1, which are indicative of the strong macroscopic diamagnetism of the solar plasma. In the lower part of the solar convection zone, the latter performs the role of negative magnetic buoyancy, thereby contributing to the for","PeriodicalId":681,"journal":{"name":"Kinematics and Physics of Celestial Bodies","volume":"40 3","pages":"161 - 171"},"PeriodicalIF":0.5,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141506938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Variations of the Geomagnetic Field Accompanying the Fall of the Kyiv Meteoroid 伴随基辅流星体坠落的地磁场变化
IF 0.5 4区 物理与天体物理
Kinematics and Physics of Celestial Bodies Pub Date : 2024-06-17 DOI: 10.3103/S0884591324030036
L. F. Chernogor, M. B. Shevelev, N. M. Tilichenko
{"title":"Variations of the Geomagnetic Field Accompanying the Fall of the Kyiv Meteoroid","authors":"L. F. Chernogor,&nbsp;M. B. Shevelev,&nbsp;N. M. Tilichenko","doi":"10.3103/S0884591324030036","DOIUrl":"10.3103/S0884591324030036","url":null,"abstract":"<p>The theoretical and experimental study of the geomagnetic effect of cosmic bodies remains an urgent problem. This is especially true for meter-sized meteoroids, for which the very existence of the magnetic effect remains in question. The purpose of this article is to present the results of the analysis of temporal variations of the <i>X-</i>, <i>Y-</i>, and <i>Z-</i>components of the geomagnetic field detected by the International Real-time Magnetic Observatory Network (INTERMAGNET) on the day of the Kyiv meteoroid fall and on reference days. The analysis of temporal variations has shown that the levels of these components on the day of the cosmic body explosion and on reference days were significantly different. The level of <i>X-</i>component with a 6 min delay decreased by 2…5 nT, which lasted approximately 60 min. With a delay of 25 min and a duration of 25 min, a quasi-periodic disturbance was observed with a variable period within 4…12 min and an amplitude increasing from 0.3…0.4 to 1.2…1.5 nT. The first disturbance, which had a speed of approximately 300 m/s, could have been caused by a blast wave. The second disturbance was most likely associated with the generation and oblique propagation of an atmospheric gravity wave with a speed of hundreds of meters per second. Within the ionosphere, the disturbance propagated at a speed of approximately 660 km/s by means of magnetohydrodynamic waves. The temporal variations of the <i>Y-</i> and <i>Z-</i>components on the day of the explosion fluctuated for 60 min and decreased by 5…10 nT. The mechanism of long-lasting disturbances of these components remains unknown. It is likely that it could be related to the diamagnetic effect. There are reasons to believe that meter-sized cosmic bodies can cause the detected magnetic effect.</p>","PeriodicalId":681,"journal":{"name":"Kinematics and Physics of Celestial Bodies","volume":"40 3","pages":"138 - 160"},"PeriodicalIF":0.5,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141506937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Geomagnetic Effect of the Solar Eclipse of October 25, 2022, in Eurasia 2022 年 10 月 25 日欧亚大陆日食的地磁效应
IF 0.5 4区 物理与天体物理
Kinematics and Physics of Celestial Bodies Pub Date : 2024-06-17 DOI: 10.3103/S0884591324030024
L. F. Chernogor, M. Yu. Holub
{"title":"Geomagnetic Effect of the Solar Eclipse of October 25, 2022, in Eurasia","authors":"L. F. Chernogor,&nbsp;M. Yu. Holub","doi":"10.3103/S0884591324030024","DOIUrl":"10.3103/S0884591324030024","url":null,"abstract":"<p>A solar eclipse (SE) can cause disturbances in all subsystems of the Earth–atmosphere–ionosphere–magnetosphere system, including the geomagnetic field. Using the data obtained at 15 stations of the INTERMAGNET network, the temporal variations of all components of the geomagnetic field are analyzed. It is found that the SE has been accompanied by a disturbance of the <i>X-</i>, <i>Y-</i>, and <i>Z-</i>components. The largest disturbances have been detected for the <i>X-</i>component (south–north). There has been a steady tendency to increase the disturbance of the <i>X-</i>component with an increase in the area of the solar disk obscuration. The disturbance magnitude of the <i>X-</i>component level under the influence of the SE is calculated. It is believed that the main mechanism for generating the magnetic effect is the disturbance of the ionospheric current system at the heights of the dynamo region. The results of observations and calculations are in good agreement with each other. In addition to a stable aperiodic effect lasting approximately 100…180 min, an increase in the range of fluctuations in the geomagnetic field level has been observed during the SE. This may indicate the generation of quasi-periodic disturbances of the geomagnetic field in the range of atmospheric gravity waves.</p>","PeriodicalId":681,"journal":{"name":"Kinematics and Physics of Celestial Bodies","volume":"40 3","pages":"117 - 137"},"PeriodicalIF":0.5,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141506936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Propagation of Galactic Cosmic Rays in the Heliosphere during Minimum Solar Activity Periods 太阳活动最低期银河宇宙射线在日光层的传播
IF 0.5 4区 物理与天体物理
Kinematics and Physics of Celestial Bodies Pub Date : 2024-05-15 DOI: 10.3103/S088459132402003X
Yu. I. Fedorov
{"title":"Propagation of Galactic Cosmic Rays in the Heliosphere during Minimum Solar Activity Periods","authors":"Yu. I. Fedorov","doi":"10.3103/S088459132402003X","DOIUrl":"10.3103/S088459132402003X","url":null,"abstract":"<p>Based on the cosmic ray transport equation, the propagation of charged high-energy particles in heliospheric magnetic fields is considered. The transport equation solution is found in the approximation of low anisotropy in the angular distribution of particles. The energy distribution of galactic cosmic rays at a heliopause is used as a boundary condition. The energy spectrum of cosmic rays in a local interstellar space is considered to be known due to the outstanding results of space missions (Pioneer, Voyager, PAMELA, AMS-02, etc.). The flux density of cosmic rays is calculated in the periods of different solar magnetic polarity. It is shown that the intensity of galactic cosmic rays in positive magnetic polarity periods is maximum near the helioequator. In the periods when the interplanetary magnetic field has a negative polarity, the intensity of cosmic rays decreases with increasing heliolatitude.</p>","PeriodicalId":681,"journal":{"name":"Kinematics and Physics of Celestial Bodies","volume":"40 2","pages":"64 - 76"},"PeriodicalIF":0.5,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141061710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Analysis of Bandgaps in the Spectrum of Acoustic-Gravity Waves in an Isothermal Atmosphere 等温大气中声重力波频谱的带隙分析
IF 0.5 4区 物理与天体物理
Kinematics and Physics of Celestial Bodies Pub Date : 2024-05-15 DOI: 10.3103/S0884591324020053
Y. O. Klymenko, A. K. Fedorenko, E. I. Kryuchkov, S. V. Melnychuk, I. T. Zhuk
{"title":"An Analysis of Bandgaps in the Spectrum of Acoustic-Gravity Waves in an Isothermal Atmosphere","authors":"Y. O. Klymenko,&nbsp;A. K. Fedorenko,&nbsp;E. I. Kryuchkov,&nbsp;S. V. Melnychuk,&nbsp;I. T. Zhuk","doi":"10.3103/S0884591324020053","DOIUrl":"10.3103/S0884591324020053","url":null,"abstract":"<p>The entire spectrum of acoustic-gravity waves (AGWs), which can exist in an infinite isothermal atmosphere, is analyzed. The main attention in the study has been paid to those regions of the spectrum that are bandgaps for freely propagating waves. However, other types of waves that differ from the freely propagating AGWs in the way of propagation and in properties still may exist in these regions. Different types of bandgaps in the acoustic-gravity wave spectrum, which are found from the analysis of the dispersion equation obtained in the model of the infinite isothermal atmosphere, are studied. Classification of the types of bandgap regions in the AGW spectrum is proposed. The structure and the localization of the bandgaps relative to the regions of freely propagating waves and special points in the bandgaps of the AGW spectrum are studied using the corresponding spectral diagrams. In the bandgap region of type I, which separates the acoustic and gravity bands of freely propagating AGWs, horizontal waves with a purely imaginary value of the vertical wavenumber can exist. In the AGW spectrum, the possibility of the existence of special acoustic-gravity modes for which one of the perturbed quantities is zero has been considered and it is shown that they can exist only in the spectral bandgap of type I. A spectral bandgap in which vertical acoustic-gravity waves with a purely imaginary value of the horizontal wavenumber can exist was also analyzed. A spectral region in which the existence of acoustic-gravity waves is impossible but atmospheric oscillations may occur is also taken into consideration in this study. The properties of wave solutions in various types of spectral bandgaps, including the peculiarities of polarization ratios, are also analyzed. The theoretical analysis of spectral bandgap regions of AGWs can be used for the experimental search of new types of wave solutions in the atmosphere.</p>","PeriodicalId":681,"journal":{"name":"Kinematics and Physics of Celestial Bodies","volume":"40 2","pages":"55 - 63"},"PeriodicalIF":0.5,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141061774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Features of Ionospheric Effects of the Solar Eclipse Occurred on the Morning of October 25, 2022 2022 年 10 月 25 日上午发生的日食对电离层影响的特征
IF 0.5 4区 物理与天体物理
Kinematics and Physics of Celestial Bodies Pub Date : 2024-05-15 DOI: 10.3103/S0884591324020028
L. F. Chernogor, Yu. B. Mylovanov
{"title":"Features of Ionospheric Effects of the Solar Eclipse Occurred on the Morning of October 25, 2022","authors":"L. F. Chernogor,&nbsp;Yu. B. Mylovanov","doi":"10.3103/S0884591324020028","DOIUrl":"10.3103/S0884591324020028","url":null,"abstract":"<p>A solar eclipse (SE) leads to perturbations of all subsystems in the Earth–atmosphere–ionosphere–magnetosphere system and to perturbations of geophysical fields. Each SE leads to a whole series of physical and chemical processes occurring in the ionosphere. Along with common features, each SE has its own peculiarities with regard to these processes. These processes depend on the solar activity phase, time of the year, time of the day, geographic coordinates, atmospheric weather, space weather, magnitude of eclipse, etc. Therefore, studying these effects during each SE is an urgent task. The aim of this study is to describe the results of the analysis of the effects features of the SE which was observed shortly after sunrise on October 25, 2022 mainly at high latitudes. The data obtained from a network of space stations and navigation satellites moving over the region of partial SE were used for observations. It is found that the maximum decrease in the total electron content (TEC) in the ionosphere in these observations was 1.6–4.1 TECU, and its relative decrease reached 12–25%. The maximum decrease in the TEC was delayed 18–33 min in time with respect to the point in time when the maximum magnitude of the SE was reached. The duration of the response of the ionosphere to the SE was 120–180 min, which exceeded the eclipse duration.</p>","PeriodicalId":681,"journal":{"name":"Kinematics and Physics of Celestial Bodies","volume":"40 2","pages":"77 - 87"},"PeriodicalIF":0.5,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141061761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigating Attraction Zones in the Photogravitational Four-Body Problem: Effects of Asteroid Belt and Small Perturbations in Coriolis and Centrifugal Forces 研究光引力四体问题中的吸引区:小行星带以及科里奥利力和离心力小扰动的影响
IF 0.5 4区 物理与天体物理
Kinematics and Physics of Celestial Bodies Pub Date : 2024-05-15 DOI: 10.3103/S0884591324020065
Vinay Kumar, Nitesh Kumar
{"title":"Investigating Attraction Zones in the Photogravitational Four-Body Problem: Effects of Asteroid Belt and Small Perturbations in Coriolis and Centrifugal Forces","authors":"Vinay Kumar,&nbsp;Nitesh Kumar","doi":"10.3103/S0884591324020065","DOIUrl":"10.3103/S0884591324020065","url":null,"abstract":"<p>In this study, we have examined the effects of small perturbations on the Coriolis force and centrifugal force in the photogravitational restricted four-body problem within the circular asteroid belt. We investigate the existence, parametric evolution, and stability of equilibrium points considering various parameters. Our findings reveal that a small perturbation in the centrifugal force significantly influences the location of equilibrium points, while a perturbation in the Coriolis force has no impact on their location. To illustrate the permissible region of motion for the infinitesimal mass relative to the Jacobi constant, we plot the zero-velocity curves. Furthermore, we conduct a comprehensive analysis to determine the influence of the Coriolis force (<span>(alpha )</span>) and centrifugal force (<span>(beta )</span>) on the geometry of the basins of convergence (BoCs). In order to quantify the unpredictability of the BoCs, we thoroughly study the basin entropy. Significantly, we have found the presence of unpredictable (fractal) regions in close proximity to the boundaries of the basins of convergence.</p>","PeriodicalId":681,"journal":{"name":"Kinematics and Physics of Celestial Bodies","volume":"40 2","pages":"88 - 104"},"PeriodicalIF":0.5,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141061746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Characteristic Properties of Solar Activity in Solar Cycle 24 太阳活动在太阳周期 24 中的特征特性
IF 0.5 4区 物理与天体物理
Kinematics and Physics of Celestial Bodies Pub Date : 2024-05-15 DOI: 10.3103/S0884591324020041
Kaan Kaplan
{"title":"The Characteristic Properties of Solar Activity in Solar Cycle 24","authors":"Kaan Kaplan","doi":"10.3103/S0884591324020041","DOIUrl":"10.3103/S0884591324020041","url":null,"abstract":"<p>Solar cycle 24 began in December 2008 and ended in December 2019. Maximum of solar cycle 24 occurred in April 2014. Magnetic field intensity has been reported via data from the Wilcox Solar Observatory. Sunspot numbers are reported via the data from WDC-SILSO, Royal Observatory of Belgium. Sunspot area distribution was determined using the data from the Max Planck Institute. Flare Index intensity is indicated, and the data recorded by the Kandilli Observatory at Bogazici University is presented. Hemisphere asymmetries in terms of sunspots and solar flare index are calculated. The number of solar flares that occur at the highest intensity (X-class) during this cycle are presented, the data for which from the NOAA/SWPC. The characteristics of Coronal Mass Ejections are given, as determined using the LASCO coronagraph operating on the SOHO mission. Solar radio flux distribution and comparison with previous cycles was studied using data from Space Weather Canada.</p>","PeriodicalId":681,"journal":{"name":"Kinematics and Physics of Celestial Bodies","volume":"40 2","pages":"105 - 115"},"PeriodicalIF":0.5,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141061772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Propagation of Acoustic-Gravity Waves in Inhomogeneous Wind Flows of the Polar Atmosphere 声重力波在极地大气不均匀风流中的传播
IF 0.5 4区 物理与天体物理
Kinematics and Physics of Celestial Bodies Pub Date : 2024-03-01 DOI: 10.3103/S0884591324010045
A. K. Fedorenko, E. I. Kryuchkov, O. K. Cheremnykh, S. V. Melnychuk
{"title":"Propagation of Acoustic-Gravity Waves in Inhomogeneous Wind Flows of the Polar Atmosphere","authors":"A. K. Fedorenko,&nbsp;E. I. Kryuchkov,&nbsp;O. K. Cheremnykh,&nbsp;S. V. Melnychuk","doi":"10.3103/S0884591324010045","DOIUrl":"10.3103/S0884591324010045","url":null,"abstract":"<p>The satellite observations of acoustic-gravity waves (AGW) in the polar atmosphere regions indicate that these waves are closely related with wind flows. This paper deals with the specific features of the propagation of acoustic-gravity waves in spatially inhomogeneous wind flows, wherein the velocity is slowly changed in the horizontal direction. A system of hydrodynamic equations taking into account the wind flow with spatial inhomogeneity is used for analysis. Unlike the system of equations written for a stationary medium (or a medium moving at a uniform velocity), the derived system contains the components describing the interaction of waves with a medium. It is shown that the effect of inhomogeneous background medium parameters can be separated from the effects of inertial forces by a special substitution of variables. An analytical expression describing the change in the amplitude of waves in a medium moving at a nonuniform velocity is derived. This expression contains two functional dependences: (1) the linear part, which is caused by the changes in the background parameters of a medium and independent of the propagation direction of waves with respect to the flow, and (2) the exponential part, which is related with inertial forces and characterizes the dependence of the amplitudes of acoustic-gravity waves on the direction of their propagation. The exponential part shows an increase in the amplitudes of waves in the headwind and a decrease in their amplitudes in the downwind. The derived theoretical dependence of the amplitudes of acoustic-gravity waves on the wind velocity is in good agreement with the data of the satellite observations of these waves in the polar atmosphere.</p>","PeriodicalId":681,"journal":{"name":"Kinematics and Physics of Celestial Bodies","volume":"40 1","pages":"15 - 23"},"PeriodicalIF":0.5,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140016882","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Solar Faculae and Flocculent Flows: Spectropolarimetric and Filter Observations in the Fe I, Ba II, and Ca II Lines 太阳面和絮状流:FeⅠ、BaⅡ和CaⅡ谱线中的测谱和滤光观测结果
IF 0.5 4区 物理与天体物理
Kinematics and Physics of Celestial Bodies Pub Date : 2024-03-01 DOI: 10.3103/S0884591324010069
R. I. Kostik
{"title":"Solar Faculae and Flocculent Flows: Spectropolarimetric and Filter Observations in the Fe I, Ba II, and Ca II Lines","authors":"R. I. Kostik","doi":"10.3103/S0884591324010069","DOIUrl":"10.3103/S0884591324010069","url":null,"abstract":"<p>The results of spectropolarimetric and filter observations of a faculae region located near the solar disc center in the Fe I 1564.3, Fe I 1565.8, Ba II 455.4, and Ca II H 396.8 nm lines are discussed. The observation data are obtained using the German vacuum tower telescope of Observatorio del Teide (Tenerife, Spain). Observations of the faculae region are made simultaneously in the three spectral regions: spectropolarimetric observations of the <i>I</i>, <i>Q</i>, <i>U</i>, and <i>V</i> Stokes parameters of two neutral iron lines Fe I 1564.8 and Fe I 1565.2 nm with a time resolution of 6 min 50 s; filter observations in 37 sections of the profile of the ionized barium Ba II 455.4 nm line with a time resolution of 25.6 s; and filter observations only in the center of the ionized calcium Ca II H 396.8 nm line with a time resolution of 4.9 s. The following observation data are studied: (1) the power of the magnetic field at the altitude of the formation of a continuous spectrum near the Fe I 1564.8 and Fe I 1565.2 nm lines (<i>h</i> ≈ −100 km); (2) wave velocities at fourteen altitude levels in the atmosphere of the Sun, at which radiation in the Ba II 455.4 nm spectral line is formed (<i>h</i> ≈ 0−650 km), and calculated phase shifts Φ(V,V) between fluctuations of velocity V in the photosphere at the height of radiation formation in the center of this line (<i>h</i> ≈ 650 km) and velocity fluctuations at the other thirteen altitude levels; and (3) the faculae contrast at the altitude of formation of the Ca II H 396.8 nm line center (<i>h</i> ≈ 1600 km). The following two trends are shown: (1) The power of velocity fluctuations greatly varies depending on the frequency of oscillations with a change in the altitude in the atmosphere of the Sun. At the altitudes ranging from 0 to 300 km, the maximum oscillation power occurs at a frequency of 3.5 mHz. Another maximum occurs near a frequency of 4.5 mHz at the altitude level of <i>h</i> = 650 km, and the maximum oscillation power at a frequency of approximately 1.5 mHz is quite noticeable at an altitude of <i>h</i> = 1600 km. (2) The contrast in the center of the Ca II H 396.8 nm line (<i>h</i> = 650 km) does not monotonically increase with an increase in the intensity of the photospheric magnetic field, as might be expected from general considerations. At large magnetic fields (<i>B</i> &gt; 140 mT), this dependence becomes inverse.</p>","PeriodicalId":681,"journal":{"name":"Kinematics and Physics of Celestial Bodies","volume":"40 1","pages":"40 - 46"},"PeriodicalIF":0.5,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140016884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信