Sensitivity of the Fe IX λ171 Line Profile to Slow Magneto-Acoustic Waves Propagating in a Solar Coronal Loop

IF 0.5 4区 物理与天体物理 Q4 ASTRONOMY & ASTROPHYSICS
S. G. Mamedov, Z. F. Aliyeva, Z. A. Samedov
{"title":"Sensitivity of the Fe IX λ171 Line Profile to Slow Magneto-Acoustic Waves Propagating in a Solar Coronal Loop","authors":"S. G. Mamedov,&nbsp;Z. F. Aliyeva,&nbsp;Z. A. Samedov","doi":"10.3103/S0884591324060059","DOIUrl":null,"url":null,"abstract":"<p>The study of MHD waves in coronal structures is of great importance in coronal seismology. The study of these waves makes it possible to reveal the physical structure and heating mechanism of the solar corona. It is of great interest to calculate the line profile in the emission spectrum of a magneto-sonic wave for various physical parameters, calculate the energy flux and compare them with observations. In this paper, the profiles of the FeIX λ171Å line in the emission spectrum of slow magneto-acoustic waves propagating in coronal loops are calculated for cases of an optically thin layer and the change in density. The line profiles were calculated for the following parameter values: wave velocity amplitude <span>\\({{\\upsilon }_{0}}\\)</span> = 10 km/s, coronal loop width 2000 and 5000 km, wavelength Λ = 20 000 and 50 000 km, Doppler width Δλ<sub>d</sub> = 0.01 Å, and at values of the angle of the line of sight and at different phases of the wave. The energy flux density is 622.5 erg/(cm<sup>2</sup> s). The calculated values of the energy flux density strongly depend on the angle of the line of sight and on the phase of the wave and range from zero at large values of θ to ~4 × 10<sup>3</sup> erg/(cm<sup>2</sup> s), the values of Doppler velocities <span>\\({{\\upsilon }_{{\\text{d}}}}\\)</span> and velocities of non-thermal movements <span>\\({{\\upsilon }_{{{\\text{nt}}}}}\\)</span> at small values of θ have a maximum value of ~13 km/s and decrease almost to zero at large values of θ. At different values of the angle of the line of sight, the asymmetry is almost not noticeable. An interesting result is that the values of the calculated (observed) energy flux can be both much less and much more than the true value: from almost zero at small values of θ. These values depend not only on the angle of the line of sight, but also on the width of the coronal loop and the wavelength.</p>","PeriodicalId":681,"journal":{"name":"Kinematics and Physics of Celestial Bodies","volume":"40 6","pages":"327 - 336"},"PeriodicalIF":0.5000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kinematics and Physics of Celestial Bodies","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.3103/S0884591324060059","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The study of MHD waves in coronal structures is of great importance in coronal seismology. The study of these waves makes it possible to reveal the physical structure and heating mechanism of the solar corona. It is of great interest to calculate the line profile in the emission spectrum of a magneto-sonic wave for various physical parameters, calculate the energy flux and compare them with observations. In this paper, the profiles of the FeIX λ171Å line in the emission spectrum of slow magneto-acoustic waves propagating in coronal loops are calculated for cases of an optically thin layer and the change in density. The line profiles were calculated for the following parameter values: wave velocity amplitude \({{\upsilon }_{0}}\) = 10 km/s, coronal loop width 2000 and 5000 km, wavelength Λ = 20 000 and 50 000 km, Doppler width Δλd = 0.01 Å, and at values of the angle of the line of sight and at different phases of the wave. The energy flux density is 622.5 erg/(cm2 s). The calculated values of the energy flux density strongly depend on the angle of the line of sight and on the phase of the wave and range from zero at large values of θ to ~4 × 103 erg/(cm2 s), the values of Doppler velocities \({{\upsilon }_{{\text{d}}}}\) and velocities of non-thermal movements \({{\upsilon }_{{{\text{nt}}}}}\) at small values of θ have a maximum value of ~13 km/s and decrease almost to zero at large values of θ. At different values of the angle of the line of sight, the asymmetry is almost not noticeable. An interesting result is that the values of the calculated (observed) energy flux can be both much less and much more than the true value: from almost zero at small values of θ. These values depend not only on the angle of the line of sight, but also on the width of the coronal loop and the wavelength.

Abstract Image

feix λ171线廓线对太阳日冕环中慢磁声波传播的灵敏度
研究日冕结构中的MHD波在日冕地震学中具有重要意义。对这些波的研究使揭示日冕的物理结构和加热机制成为可能。计算不同物理参数下的磁声波发射谱线轮廓,计算能量通量并与观测值进行比较,是一个非常有意义的问题。本文计算了在光薄层和密度变化情况下慢磁声波在日冕环中传播的发射谱中的FeIX λ171Å线的分布。计算了波速振幅\({{\upsilon }_{0}}\) = 10 km/s,日冕环宽度2000和5000 km,波长Λ = 20 000和50 000 km,多普勒宽度Δλd = 0.01 Å,以及视距角值和波的不同相位时的线廓线。能量通量密度的计算值与视距角和波的相位密切相关,在大θ值下为0 ~ 4 × 103 erg/(cm2 s),在小θ值下多普勒速度\({{\upsilon }_{{\text{d}}}}\)和非热运动速度\({{\upsilon }_{{{\text{nt}}}}}\)的值最大可达13 km/s,在大θ值下几乎为零。在不同的视线角度值下,不对称几乎不明显。一个有趣的结果是,计算(观察到的)能量通量的值可以比真实值小得多,也可以比真实值大得多:在很小的θ值上,几乎为零。这些值不仅取决于视线的角度,还取决于日冕环的宽度和波长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Kinematics and Physics of Celestial Bodies
Kinematics and Physics of Celestial Bodies ASTRONOMY & ASTROPHYSICS-
CiteScore
0.90
自引率
40.00%
发文量
24
审稿时长
>12 weeks
期刊介绍: Kinematics and Physics of Celestial Bodies is an international peer reviewed journal that publishes original regular and review papers on positional and theoretical astronomy, Earth’s rotation and geodynamics, dynamics and physics of bodies of the Solar System, solar physics, physics of stars and interstellar medium, structure and dynamics of the Galaxy, extragalactic astronomy, atmospheric optics and astronomical climate, instruments and devices, and mathematical processing of astronomical information. The journal welcomes manuscripts from all countries in the English or Russian language.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信