{"title":"Chronoamperometric response of electrochemical reaction diffusion system: a new theoretical and numerical investigation for EC2 scheme","authors":"A. Eswari, S. Saravana kumar","doi":"10.1007/s13738-024-03063-1","DOIUrl":"10.1007/s13738-024-03063-1","url":null,"abstract":"<div><p>This paper introduces a novel mathematical model for chronoamperometric analysis of electrochemical reactions in the EC2 scheme. Utilizing the homotopy perturbation method, we address the highly nonlinear reaction–diffusion equations, even under non-steady state conditions. We offer an approximate analytical expression for species <i>O</i> and <i>R</i> concentrations, along with sensitivity analysis on diffusion and kinetic parameters. Results under steady state conditions validate our model against prior findings. Additionally, we provide a numerical solution using Matlab and Maple software, demonstrating satisfactory agreement with experimental data.</p></div>","PeriodicalId":676,"journal":{"name":"Journal of the Iranian Chemical Society","volume":"21 8","pages":"2183 - 2199"},"PeriodicalIF":2.2,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141571075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hoda Mollabagher, Mohammad M. Mojtahedi, Seyed Amir Hossein Seyed Mousavi
{"title":"Recent progress of organosilicon compound: synthesis and applications","authors":"Hoda Mollabagher, Mohammad M. Mojtahedi, Seyed Amir Hossein Seyed Mousavi","doi":"10.1007/s13738-024-03041-7","DOIUrl":"10.1007/s13738-024-03041-7","url":null,"abstract":"<div><p>Organosilicon compounds play a crucial role as essential building blocks and valuable organic molecules in various materials. They are extensively utilized as synthetic intermediates in chemical synthesis processes. Recent studies have highlighted the multifaceted role of silicon compounds, showcasing their significance not only as reactive participants or products but also as potent catalysts in various chemical reactions, as reported by researchers. In this comprehensive review, our objective is to provide a summary of recent advancements in synthesizing various organosilicon compounds in formation of silicon–carbon, silicon–oxygen, silicon–nitrogen and explore the applications of siliconic materials as catalysts in polymerization, reduction, and isomerization processes. Emphasizing the significant potential of this methodology, we aspire to inspire further research and applications in this rapidly emerging field. Furthermore, this review covers over 50 years of research on organosilicon chemistry in CCERCI under supervision of Prof. Seyed Mohammad Bolourtchian.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":676,"journal":{"name":"Journal of the Iranian Chemical Society","volume":"21 7","pages":"1795 - 1816"},"PeriodicalIF":2.2,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141509663","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marjan Moghayedi, Elaheh K. Goharshadi, Kiarash Ghazvini, Laleh Ranjbaran
{"title":"Assessment of the cytotoxicity of silver-graphene oxide nanocomposites on Escherichia coli and glioblastoma cancer cells","authors":"Marjan Moghayedi, Elaheh K. Goharshadi, Kiarash Ghazvini, Laleh Ranjbaran","doi":"10.1007/s13738-024-03013-x","DOIUrl":"10.1007/s13738-024-03013-x","url":null,"abstract":"<div><p>In this research, we examined the toxicity of Ag-graphene oxide (GO) nanocomposites against both the Gram-negative bacterium <i>Escherichia coli</i> and Glioblastoma cancer cells (U87MG). Our findings reveal that Ag-GO possesses bactericidal properties, with a minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of 160 µg/mL. The antibacterial efficacy of Ag-GO is contingent on contact time and concentration, making it a potential candidate for integration into materials designed to combat microbial infections. The bactericidal effect of Ag-GO can be attributed to the release of silver ions and the physical damage inflicted by the sharp edges of GO sheets. Furthermore, our study demonstrates that Ag-GO exhibits anticancer activity against U87MG cells, with an IC<sub>50</sub> value of 270 µg/mL. The mechanism underlying the anticancer activity of Ag-GO likely involves cell membrane disruption and apoptosis induction. These findings signify the promising medical and biological applications of Ag-graphene oxide nanocomposites.</p></div>","PeriodicalId":676,"journal":{"name":"Journal of the Iranian Chemical Society","volume":"21 7","pages":"1817 - 1827"},"PeriodicalIF":2.2,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141509658","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tayyebeh Beyk Mohammadi, Robabeh Alizadeh, Azam Jalalian, Sara Seyfi, Vahid Amani
{"title":"Two new coordination polymers of Tl(I) & Hg(II), based on nicotinic acid ligand: synthesis, characterization, crystal structure determination & DFT calculation","authors":"Tayyebeh Beyk Mohammadi, Robabeh Alizadeh, Azam Jalalian, Sara Seyfi, Vahid Amani","doi":"10.1007/s13738-024-03060-4","DOIUrl":"10.1007/s13738-024-03060-4","url":null,"abstract":"<div><p>Two new complexes, [Tl(pyc)]<sub>n</sub> (<b>1</b>) and {[Hg(pyc.H)(μ-Br)<sub>2</sub>].C<sub>2</sub>H<sub>5</sub>OH}<sub>n</sub> (<b>2</b>) have been synthesized by the reaction of one and two equivalent of pyridine 3-carboxylic acid (pyc<b><i>.</i></b>H) ligand with Tl<sub>2</sub>(CO<sub>3</sub>) (<b>1</b>) and HgBr<sub>2</sub> (<b>2</b>), respectively. The complexes were fully characterized by elemental analysis, UV, FT-IR, FT-NMR and emission spectroscopies and their structures were studied by the single-crystal X-ray diffraction method. According to X-ray analysis, complex<b> 1</b> (<i>τ</i><sub><i>5</i></sub> = 0.915) exhibit slightly distorted trigonal bipyramidal geometry around Tl(I) and complex <b>2</b> (<i>τ</i><sub><i>5 =</i></sub> 0.062) shows a slightly distorted square pyramidal geometry around Hg(II). There are intermolecular hydrogen bonding (for complexes <b>1</b> and <b>2</b>) and π-π contacts (for complex<b> 2</b>) which play a significant role in the stabilization of the crystal structure. Luminescence studies revealed the emission properties of free ligand and both complexes in solution. Moreover, in this study, density functional theory (DFT) was performed for Tl(I) coordination polymer<b> 1</b>. The optimized geometry of this complex is shown in good agreement by single crystal X-ray data. Molecular properties including bond lengths, bond angles, and HOMO-LUMO energy levels, were analyzed. Moreover, the UV-Vis spectra were analyzed using time-dependent density functional theory (TD-DFT) method. The tendency of the donor-acceptor interactions in the complex <b>1</b> was examined using natural bond orbital (NBO) analysis. In addition, the partial density of states (PDOS) calculation indicates that the π-character of the aromatic pyridine ligand plays role in dominating the valence bands with negligible participation of the Tl orbitals.</p></div>","PeriodicalId":676,"journal":{"name":"Journal of the Iranian Chemical Society","volume":"21 8","pages":"2159 - 2172"},"PeriodicalIF":2.2,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141509659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Synthesis of activated carbon and its rGO composite using pomegranate peels: its photocatalytic and electrode material for high capacitance supercapacitor applications","authors":"B. V. Raghu Vamshi Krishna, T. Nageswara Rao","doi":"10.1007/s13738-024-03030-w","DOIUrl":"10.1007/s13738-024-03030-w","url":null,"abstract":"<div><p>The peels of pomegranate fruits were employed in the current work to produce activated carbon (AC) using the high temperature carbonization method. The generated activated carbon using pomegranate peel (AC-PP) powder was discovered to have a layered and porous form as revealed by scanning electron microscopic images. It was discovered that activated carbon had an energy gap (<i>E</i><sub>g</sub>) of 4.454 eV. The photocatalytic experiments performed for the degradation of fast blue dye reveal that after 120 min of UV light irradiation, the AC-PP powder achieve a decolorization rate of 62.9%, respectively. Current was collected through the nickel mesh, and the electrochemical elements in rGO, the principal active component in AC-PP powder, were supported by the mesh. Nickel mesh electrodes were analysed using impedance spectroscopy and cyclic voltammetry. Both AC-PP and AC-PP-rGO electrodes' hydrogen diffusion coefficients were determined to be 1.134 10<sup>–4</sup> and 0.0014 cm<sup>2</sup> s<sup>−1</sup>, respectively. Experiments with galvanostatic charge–discharge revealed the produced AC-PP and AC-PP-rGO electrodes' superior capacitance potential, which is useful in the fabrication of supercapacitors. The AC-PP and AC-PP-rGO electrodes have 175.6 and 324.8 F g<sup>−1</sup> specific capacitances. These unique impacts can also be assessed by energy storage performance using affordable carbon resources in various applications. These novel results might be used for developing up particular resources for environmental and power storage applications.</p></div>","PeriodicalId":676,"journal":{"name":"Journal of the Iranian Chemical Society","volume":"21 7","pages":"1885 - 1896"},"PeriodicalIF":2.2,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141509660","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Halime Morovati, Mohammad R. Noorbala, Mansoor Namazian, Hamid R. Zare, Ahmad Ali Dehghani-Firouzabadi
{"title":"Experimental and theoretical investigations of an unsymmetrical tridentate schiff base as an anti-corrosion agent for mild steel in 2M hydrochloric acid electrolyte","authors":"Halime Morovati, Mohammad R. Noorbala, Mansoor Namazian, Hamid R. Zare, Ahmad Ali Dehghani-Firouzabadi","doi":"10.1007/s13738-024-03042-6","DOIUrl":"10.1007/s13738-024-03042-6","url":null,"abstract":"<div><p>The inhibition performance and adsorption behavior of an unsymmetrical tridentate Schiff base, 2-(((2-((2-nitrophenyl) thio) phenyl) imino) methyl)phenol (NOS) on mild steel in 2M hydrochloric acid solution has been studied using electrochemical and quantum chemical techniques. The electrochemical outcomes suggest that NOS works as an anodic-type inhibitor. The adsorption process of the NOS Schiff base obeys the Langmuir model. The theoretical evaluation has been performed using DFT calculations to investigate the correlation of effective corrosion inhibition with some NOS Schiff base structural parameters. The obtained results revealed that there was a good agreement between the theoretical and experimental results.</p></div>","PeriodicalId":676,"journal":{"name":"Journal of the Iranian Chemical Society","volume":"21 7","pages":"1947 - 1961"},"PeriodicalIF":2.2,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141509661","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Soumaya Agren, Jamal El Haskouri, Emmanuel Beyou, Mohamed Hassen V Baouab
{"title":"L-Lysine-derived fluorescent salicylidenes: synthesis, characterization and turn-off Cu2+ and Co2+ selective cation sensing","authors":"Soumaya Agren, Jamal El Haskouri, Emmanuel Beyou, Mohamed Hassen V Baouab","doi":"10.1007/s13738-024-03052-4","DOIUrl":"10.1007/s13738-024-03052-4","url":null,"abstract":"<div><p>Two L-lysine-derived salicylidene ligands have been synthesized under ultrasound irradiations and characterized by several spectroscopic techniques. Both ligands exhibited a blue fluorescence emission in ethanolic solutions. (S, E)-3-Amino-7-((2-hydroxybenzylidene) amino) heptanoic acid (A) and (S, E)-3-amino-7-((4-chloro-2-hydroxybenzylidene) amino) heptanoic acid (B) showed a turn-off sensing of Cu<sup>2+</sup> and Co<sup>2+</sup> cations, respectively, over several tested transition metal cations such as Fe<sup>2+</sup>, Zn<sup>2+</sup>, Cr<sup>3+</sup>, Co<sup>2+</sup>, Ni<sup>2+</sup> and Cu<sup>2+</sup> in aqueous media. The ability of both tested L-lysine-derived ligands (A) and (B) to distinguish Cu<sup>2+</sup> and CO<sup>2+</sup>, respectively, has been verified by optical studies, showing new absorption bands around 304 and 391 nm for (A)-Cu<sup>2+</sup> and a new band around 455 nm for (B)-Co<sup>2+</sup> along with the disappearance of the original bands supporting thereby the noticed Turn–Off results.</p><h3>Graphical abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":676,"journal":{"name":"Journal of the Iranian Chemical Society","volume":"21 8","pages":"2103 - 2112"},"PeriodicalIF":2.2,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141524331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ye Li, Jianjun Zhu, Nan Zhao, Gang Ma, Bohu Liu, Jiajun Xu
{"title":"Retraction Note: ZnO as a promising nanocarrier for efficient delivery of 5-fluorouracil anticancer drug","authors":"Ye Li, Jianjun Zhu, Nan Zhao, Gang Ma, Bohu Liu, Jiajun Xu","doi":"10.1007/s13738-024-03059-x","DOIUrl":"10.1007/s13738-024-03059-x","url":null,"abstract":"","PeriodicalId":676,"journal":{"name":"Journal of the Iranian Chemical Society","volume":"21 8","pages":"2267 - 2267"},"PeriodicalIF":2.2,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142412283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Thulasiprevinnah, Shahid Bashir, K. Ramesh, S. Ramesh
{"title":"Recent advances in electrochemical biosensors for the determination of biomolecules on modified and unmodified electrodes","authors":"S. Thulasiprevinnah, Shahid Bashir, K. Ramesh, S. Ramesh","doi":"10.1007/s13738-024-03050-6","DOIUrl":"10.1007/s13738-024-03050-6","url":null,"abstract":"<div><p>Electrochemical sensors are a class of sensors in which the electrode is the transducer element. In this type of sensor, an electrode is a critical component employed as a solid support for immobilizing biomolecules and electron movement. The material, fabrication approach, and design affect the electrode’s structure and properties, which ultimately determine the biosensor’s performance, including sensitivity, selectivity, limit of detection, and dynamic range. They also influence the biosensor’s cost, manufacturability, disposability, and measurement capabilities. This review article describes recent advances in using non-modified and modified electrodes as support in electrochemical biosensors for the determination of biomolecules. It summarizes recent work on modifying electrodes using carbonaceous materials, conducting polymers, MXenes, and transition metal oxide nanomaterials. It also focuses on current techniques, types of materials, designs, simulation studies, and fabrication methods on unmodified and modified electrodes. Lastly, challenges in electrochemical sensors were identified, and future directions were presented comprehensively.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":676,"journal":{"name":"Journal of the Iranian Chemical Society","volume":"21 7","pages":"1739 - 1768"},"PeriodicalIF":2.2,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141524332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Iodide adsorption from aqueous solutions using zirconium-containing anion exchange resin as an oxidizing resin: batch and column studies","authors":"Mona Akbari, Shahram Sharifnia","doi":"10.1007/s13738-024-03014-w","DOIUrl":"10.1007/s13738-024-03014-w","url":null,"abstract":"<div><p>In the current study, a zirconium-containing anion exchange resin was synthesized as an oxidizing resin for iodide adsorption from aqueous solutions. The static adsorption capacity of the oxidizing resin was 612.86 mg/g (obtained from isotherm studies and the Langmuir model). This capacity was 31% higher than the capacity of counter parent resin for iodide adsorption. Adsorption performance of the oxidizing resin was close to maximal over a wide range of pHs (2–7), and the best results were obtained at pH = 3 (8.5% higher than the resin capacity in neutral pH). Iodide removal selectivity in the presence of three commonly encountered anions <span>({{text{SO}}}_{4}^{2-})</span>, <span>({{text{NO}}}_{3}^{-})</span> and <span>({{text{Cl}}}^{-})</span> was improved. The iodide selectivity of oxidizing resin in the presence of <span>({{text{Cl}}}^{-})</span> ion was excellent. Breakthrough curves of both resins with and without encountered anions were fitted with common breakthrough curve models. The results were consistent with the results of the batch mood experiments. Pseudo-second-order kinetic was described kinetic behavior of both resins well. An iodide adsorption mechanism was proposed using the results of batch experiments and the resin characterizations (XPS and Raman spectra). The potential of oxidizing resin for iodide oxidation into iodine increased the capacity and selectivity of resin toward iodide ions.</p></div>","PeriodicalId":676,"journal":{"name":"Journal of the Iranian Chemical Society","volume":"21 7","pages":"1829 - 1841"},"PeriodicalIF":2.2,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141509662","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}