W. McMahon, J. Simon, M. Young, E. Warren, J. Buencuerpo, K. Schulte, C. Packard, J. Geisz
{"title":"Fabrication of Thin III-V Solar Cells on Ni Films using Electroless Ni Deposition","authors":"W. McMahon, J. Simon, M. Young, E. Warren, J. Buencuerpo, K. Schulte, C. Packard, J. Geisz","doi":"10.1109/PVSC40753.2019.8980778","DOIUrl":"https://doi.org/10.1109/PVSC40753.2019.8980778","url":null,"abstract":"Thin solar cells are inherently fragile, and must be properly supported during fabrication, handling and use. Metal films can provide this support, but accomplishing this can be challenging. Here we describe a method for fabricating thin III-V solar cells on Ni films, using electroless deposition to deposit a thick (10-50 µm) Ni film onto the bottom of an inverted III-V solar cell prior to substrate removal. Cells have been fabricated on both rigid and flexible supports with no loss of performance when compared to cells processed using standard inverted-cell processing.","PeriodicalId":6749,"journal":{"name":"2019 IEEE 46th Photovoltaic Specialists Conference (PVSC)","volume":"4 1","pages":"3224-3226"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74168760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
E. Schneller, H. Seigneur, Jason Lincoln, A. Gabor
{"title":"The Impact of Cold Temperature Exposure in Mechanical Durability Testing of PV Modules","authors":"E. Schneller, H. Seigneur, Jason Lincoln, A. Gabor","doi":"10.1109/PVSC40753.2019.8980533","DOIUrl":"https://doi.org/10.1109/PVSC40753.2019.8980533","url":null,"abstract":"Existing mechanical durability testing sequences typically perform mechanical loading prior to environmental exposures such as thermal cycling or humidity freeze. Recent work has shown that the fracture strength of silicon solar cells can reduce after exposure to temperatures below -20°C. In an effort to better evaluate modules with respect to cell crack durability, we explore the use of a single thermal cycle prior to mechanical loading. Modules were exposed to a static front-side load before and after exposure to a single thermal cycle and were characterized with current-voltage measurements and electroluminescence imaging. The results show a significant increase in the number of cell cracks that are generated at a given load after a single cold exposure. We explore how this can be used to further optimize the qualification test sequence for mechanical durability.","PeriodicalId":6749,"journal":{"name":"2019 IEEE 46th Photovoltaic Specialists Conference (PVSC)","volume":"2 1","pages":"1521-1524"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74168877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
H. Nguyen, L. Li, F. Kremer, A. Cuevas, D. Macdonald, T. Truong, D. Yan, C. Samundsett, R. Basnet, M. Tebyetekerwa, H. Guthrey, M. Al‐Jassim, Z. Li
{"title":"Luminescence from poly-Si films and its application to study passivating-contact solar cells","authors":"H. Nguyen, L. Li, F. Kremer, A. Cuevas, D. Macdonald, T. Truong, D. Yan, C. Samundsett, R. Basnet, M. Tebyetekerwa, H. Guthrey, M. Al‐Jassim, Z. Li","doi":"10.1109/PVSC40753.2019.8980949","DOIUrl":"https://doi.org/10.1109/PVSC40753.2019.8980949","url":null,"abstract":"In recent years, polycrystalline silicon (poly-Si) based passivating-contact solar cells have received tremendous attention from the solar research community due to its excellent surface passivation and high carrier conductivity. However, the poly-Si films are not transparent to all wavelengths of the solar spectrum. There is often some parasitic absorption in these films. From a different standpoint, as they absorb some light, they can luminesce. This phenomenon provides us with unique opportunities to investigate optoelectronic properties of the films in a fast, contactless, and nondestructive manner. In this work, we report the luminescence phenomenon from poly-Si films used in passivating-contact solar cells. We then utilize this phenomenon to report a range of applications for solar cells including studies of carrier transport behaviors and hydrogenation inside the films.","PeriodicalId":6749,"journal":{"name":"2019 IEEE 46th Photovoltaic Specialists Conference (PVSC)","volume":"85 1","pages":"2325-2328"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74192847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An Economic and Environmental Assessment of Residential Rooftop Photovoltaics with Second Life Batteries in the US","authors":"Dipti Kamath, Siddharth Shukla, A. Anctil","doi":"10.1109/PVSC40753.2019.8981132","DOIUrl":"https://doi.org/10.1109/PVSC40753.2019.8981132","url":null,"abstract":"The economic and environmental performance of residential rooftop photovoltaics (PVs) with Second Life Batteries (SLBs) was evaluated in five US cities. The annualized system cost and global warming potential (GWP) of SLB with PV were compared with those of grid-connected PV. Adding SLBs provided cost reduction relative to the grid-connected PV if excess electricity generated by the PV is not sold back to the grid; otherwise, adding SLBs increased the cost. The combination of SLBs with PV had the lowest GWP for all scenarios considered. Time-of-use pricing structure showed similar trends as well.","PeriodicalId":6749,"journal":{"name":"2019 IEEE 46th Photovoltaic Specialists Conference (PVSC)","volume":"115 1","pages":"2467-2471"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74412350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Reduction of Operating Temperatures of PV Modules using Thermally Conductive Backsheets: Site Dependence","authors":"A. Pavgi, Jaewon Oh, G. Kelly, G. Tamizhmani","doi":"10.1109/PVSC40753.2019.8981180","DOIUrl":"https://doi.org/10.1109/PVSC40753.2019.8981180","url":null,"abstract":"Photovoltaic (PV) packaging materials impact the module operating temperatures. This paper compares the thermal performance of thermally conductive backsheets (TCB) with the benchmark tedlar-polyester-tedlar (TPT) backsheet. In this work, the nine-cell modules with TCB_A and TCB_B typically operate at lower cell temperatures under desert climatic conditions with low wind speed whereas TCB_C and TCB_D modules operate at lower backsheet temperatures but at almost similar cell temperatures under temperate climatic conditions. The Nominal Operating Cell Temperature (NOCT) of modules with thermally conductive backsheet is lower than TPT with a temperature difference as high as 2 °C. All TCBs have higher thermal conductivity values as compared to TPT. TCBs can perform better, worse or equal compared to TPT depending on the dynamic site conditions. This paper presents only the thermal performance of backsheets and does not present any data on reliability and durability of these backsheets.","PeriodicalId":6749,"journal":{"name":"2019 IEEE 46th Photovoltaic Specialists Conference (PVSC)","volume":"8 1","pages":"0544-0549"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74552504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
T. Kohl, B. Vermang, J. Wild, D. Buldu, G. Birant, G. Brammertz, N. A. Rivas, F. Renner, M. Meuris, J. Poortmans
{"title":"A study of the degradation mechanisms of ultra-thin CIGS solar cells submitted to a damp heat environment","authors":"T. Kohl, B. Vermang, J. Wild, D. Buldu, G. Birant, G. Brammertz, N. A. Rivas, F. Renner, M. Meuris, J. Poortmans","doi":"10.1109/PVSC40753.2019.8980688","DOIUrl":"https://doi.org/10.1109/PVSC40753.2019.8980688","url":null,"abstract":"Producing the green energy of tomorrow will require highly efficient as well as energy-, and cost-effective solar cells in addition to having reasonable lifetimes. To determine if CIGS can be made to submit to these constraints, we produced ultra-thin (500nm) single-stage coevaporated CIGS solar cells. We doped these cells with varying amounts and types of alkali atoms and submitted them to accelerated lifetime testing. Results showed definite effect of the alkali concentration on the degradation of the cells but showed limited migration. Instead, the seeping of water into the grain boundaries was identified as the main culprit for performance degradation.","PeriodicalId":6749,"journal":{"name":"2019 IEEE 46th Photovoltaic Specialists Conference (PVSC)","volume":"3 1","pages":"1854-1856"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78604102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Hydrogel-Mediated Semiconductor Bonding for Photovoltaic Applications","authors":"Kodai Kishibe, K. Tanabe","doi":"10.1109/PVSC40753.2019.8980663","DOIUrl":"https://doi.org/10.1109/PVSC40753.2019.8980663","url":null,"abstract":"Hydrogel-mediated semiconductor wafer bonding has been demonstrated for low-cost fabrication of high-efficiency lattice-mismatched multijunction solar cells. Wafer direct bonding can be hardly applied in the presence of wafer surface roughness or particles. Our hydrogel bonding scheme benefits from high surface roughness and particulate tolerances, optical transmittance, and electrical conductivity by utilizing the hydrogels' versatile properties suitable particularly for photovoltaic applications. We have investigated three types of hydrogels and all of them exhibit sufficient transmittance, bonding strength, and conductivity for the fabrication of highefficiency multijunction solar cells.","PeriodicalId":6749,"journal":{"name":"2019 IEEE 46th Photovoltaic Specialists Conference (PVSC)","volume":"43 1","pages":"2185-2187"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78397247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Ghods, V. Saravade, Andrew Woode, Chuanle Zhou, I. Ferguson
{"title":"Effect of Gate Voltage on the Photovoltaic Performance of GaAs-based Schottky Junction Solar Cells","authors":"A. Ghods, V. Saravade, Andrew Woode, Chuanle Zhou, I. Ferguson","doi":"10.1109/PVSC40753.2019.8980770","DOIUrl":"https://doi.org/10.1109/PVSC40753.2019.8980770","url":null,"abstract":"In this paper, the effect of external gate voltage on GaAs-based metal-semiconductor (MS) Schottky solar cells is investigated. Subsequent changes in photovoltaic characteristic properties of the solar cells are extracted, reported and explained. Under positive gate voltages, the open-circuit voltage and short-circuit current density measured at collector are significantly increased due to the drift of holes from gate junction to the collector (forward bias condition of gate junction). However, there is slight increase in open-circuit voltage under reverse gate voltages, where only thermally generated electrons drift toward the collector junction. Moreover, negative gate voltage on insulated gate contact has resulted into slight increase in open-circuit voltage and short-circuit current compared to zero gate voltage. These results demonstrate the potential to change and control the performance characteristics of Schottky junction solar cells by using gated layers.","PeriodicalId":6749,"journal":{"name":"2019 IEEE 46th Photovoltaic Specialists Conference (PVSC)","volume":"45 1","pages":"1743-1747"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75060817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sharmin Abdullah, Rodolfo Aguirre, Xiaowang W. Zhou, D. Zubia
{"title":"Growth Evolution of Polycrystalline CdTe/CdS with Atomic Scale Resolution via Molecular Dynamics","authors":"Sharmin Abdullah, Rodolfo Aguirre, Xiaowang W. Zhou, D. Zubia","doi":"10.1109/PVSC40753.2019.8981286","DOIUrl":"https://doi.org/10.1109/PVSC40753.2019.8981286","url":null,"abstract":"A new method to study polycrystalline growth of CdTe layers has been developed using Molecular Dynamics (MD). The results show the creation of polycrystalline CdTe/CdS structures that closely recreate the morphology of experimental polycrystalline growth. The growth shows the nucleation and coalescence of grains at early stages for CdS on amorphous CdS and CdTe on polycrystalline CdS.","PeriodicalId":6749,"journal":{"name":"2019 IEEE 46th Photovoltaic Specialists Conference (PVSC)","volume":"36 1","pages":"1826-1829"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77438147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Room Temperature Wet Chemical Growth of an Oxygen Enhanced Diffusion Oxide Utilized in a Boron Diffusion Process","authors":"Orry Faur, M. Faur","doi":"10.1109/PVSC40753.2019.8980845","DOIUrl":"https://doi.org/10.1109/PVSC40753.2019.8980845","url":null,"abstract":"The Room Temperature Wet Chemistry Growth (RTWCG) technology is a novel technology for growing highly uniform amorphous SiOX layers into silicon substrates [1]. By growing RTWCG SiOX layers on one side of silicon substrates, the hydrophilic nature of the SiOX layer made it possible for the crystallization of boric acid, onto the silicon substrate, from an aqueous solution comprised of boric acid dissolved in dilute hydrofluoric acid solution. The crystallized boric acid layer was used as a p+ dopant source for a p+/n+ structure. A sheet resistance of 70 ohm/sq was achieved in three minutes at 1050°C, ambient air. Since the boron diffusant can be created in an inline chemical bench, this new approach will improve the efficiency of traditional solar cells in a cost effective and, very importantly, process efficient way. This method can lower the cost of producing bifacial cells, rear local-diffused (PERL) cells, front surface field-interdigitated back contact (FSF-IBC) solar cells, and other cell structures which depend on boron diffusion to create a p+ or p++ emitter layer.","PeriodicalId":6749,"journal":{"name":"2019 IEEE 46th Photovoltaic Specialists Conference (PVSC)","volume":"52 1","pages":"0308-0310"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77579579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}