硼扩散过程中氧增强扩散氧化物的室温湿化学生长

Orry Faur, M. Faur
{"title":"硼扩散过程中氧增强扩散氧化物的室温湿化学生长","authors":"Orry Faur, M. Faur","doi":"10.1109/PVSC40753.2019.8980845","DOIUrl":null,"url":null,"abstract":"The Room Temperature Wet Chemistry Growth (RTWCG) technology is a novel technology for growing highly uniform amorphous SiOX layers into silicon substrates [1]. By growing RTWCG SiOX layers on one side of silicon substrates, the hydrophilic nature of the SiOX layer made it possible for the crystallization of boric acid, onto the silicon substrate, from an aqueous solution comprised of boric acid dissolved in dilute hydrofluoric acid solution. The crystallized boric acid layer was used as a p+ dopant source for a p+/n+ structure. A sheet resistance of 70 ohm/sq was achieved in three minutes at 1050°C, ambient air. Since the boron diffusant can be created in an inline chemical bench, this new approach will improve the efficiency of traditional solar cells in a cost effective and, very importantly, process efficient way. This method can lower the cost of producing bifacial cells, rear local-diffused (PERL) cells, front surface field-interdigitated back contact (FSF-IBC) solar cells, and other cell structures which depend on boron diffusion to create a p+ or p++ emitter layer.","PeriodicalId":6749,"journal":{"name":"2019 IEEE 46th Photovoltaic Specialists Conference (PVSC)","volume":"52 1","pages":"0308-0310"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Room Temperature Wet Chemical Growth of an Oxygen Enhanced Diffusion Oxide Utilized in a Boron Diffusion Process\",\"authors\":\"Orry Faur, M. Faur\",\"doi\":\"10.1109/PVSC40753.2019.8980845\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Room Temperature Wet Chemistry Growth (RTWCG) technology is a novel technology for growing highly uniform amorphous SiOX layers into silicon substrates [1]. By growing RTWCG SiOX layers on one side of silicon substrates, the hydrophilic nature of the SiOX layer made it possible for the crystallization of boric acid, onto the silicon substrate, from an aqueous solution comprised of boric acid dissolved in dilute hydrofluoric acid solution. The crystallized boric acid layer was used as a p+ dopant source for a p+/n+ structure. A sheet resistance of 70 ohm/sq was achieved in three minutes at 1050°C, ambient air. Since the boron diffusant can be created in an inline chemical bench, this new approach will improve the efficiency of traditional solar cells in a cost effective and, very importantly, process efficient way. This method can lower the cost of producing bifacial cells, rear local-diffused (PERL) cells, front surface field-interdigitated back contact (FSF-IBC) solar cells, and other cell structures which depend on boron diffusion to create a p+ or p++ emitter layer.\",\"PeriodicalId\":6749,\"journal\":{\"name\":\"2019 IEEE 46th Photovoltaic Specialists Conference (PVSC)\",\"volume\":\"52 1\",\"pages\":\"0308-0310\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 46th Photovoltaic Specialists Conference (PVSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PVSC40753.2019.8980845\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 46th Photovoltaic Specialists Conference (PVSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC40753.2019.8980845","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

室温湿化学生长(RTWCG)技术是一种在硅衬底上生长高度均匀的非晶SiOX层的新技术。通过在硅衬底的一侧生长RTWCG SiOX层,SiOX层的亲水性使得硼酸在硅衬底上的结晶成为可能,硼酸的水溶液由溶解在稀氢氟酸溶液中的硼酸组成。结晶硼酸层作为p+/n+结构的p+掺杂源。在1050°C的环境空气中,在三分钟内达到70欧姆/平方的薄片电阻。由于硼扩散剂可以在在线化学实验台上产生,这种新方法将以一种经济有效的方式提高传统太阳能电池的效率,而且非常重要的是,这是一种高效的工艺方式。这种方法可以降低生产双面电池、后局部扩散(PERL)电池、前表面场交叉后接触(FSF-IBC)太阳能电池以及其他依赖硼扩散产生p+或p++发射层的电池结构的成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Room Temperature Wet Chemical Growth of an Oxygen Enhanced Diffusion Oxide Utilized in a Boron Diffusion Process
The Room Temperature Wet Chemistry Growth (RTWCG) technology is a novel technology for growing highly uniform amorphous SiOX layers into silicon substrates [1]. By growing RTWCG SiOX layers on one side of silicon substrates, the hydrophilic nature of the SiOX layer made it possible for the crystallization of boric acid, onto the silicon substrate, from an aqueous solution comprised of boric acid dissolved in dilute hydrofluoric acid solution. The crystallized boric acid layer was used as a p+ dopant source for a p+/n+ structure. A sheet resistance of 70 ohm/sq was achieved in three minutes at 1050°C, ambient air. Since the boron diffusant can be created in an inline chemical bench, this new approach will improve the efficiency of traditional solar cells in a cost effective and, very importantly, process efficient way. This method can lower the cost of producing bifacial cells, rear local-diffused (PERL) cells, front surface field-interdigitated back contact (FSF-IBC) solar cells, and other cell structures which depend on boron diffusion to create a p+ or p++ emitter layer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信