2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC)最新文献

筛选
英文 中文
Modifying the Optical Phonon Response of Nanocrystals inside Terahertz Plasmonic Nanocavities 修改太赫兹等离子体纳米腔内纳米晶体的光学声子响应
Xin Jin, A. Cerea, G. Messina, A. Rovere, R. Piccoli, F. De Donato, Francisco Palazón, A. Perucchi, P. Di Pietro, R. Morandotti, S. Lupi, F. De Angelis, M. Prato, A. Toma, L. Razzari
{"title":"Modifying the Optical Phonon Response of Nanocrystals inside Terahertz Plasmonic Nanocavities","authors":"Xin Jin, A. Cerea, G. Messina, A. Rovere, R. Piccoli, F. De Donato, Francisco Palazón, A. Perucchi, P. Di Pietro, R. Morandotti, S. Lupi, F. De Angelis, M. Prato, A. Toma, L. Razzari","doi":"10.1109/cleoe-eqec.2019.8872209","DOIUrl":"https://doi.org/10.1109/cleoe-eqec.2019.8872209","url":null,"abstract":"Phonons are quantized lattice vibrations that represent a major energy dissipation channel in solid-state systems [1], both at the macro- and at the nano-scale. Although the phonon response of a specific nanomaterial is usually considered as its intrinsic fingerprint, here we show how it can be altered by exploiting the unique properties of terahertz (THz) plasmonic nanocavities [2]. Specifically, we obtained such nanocavities from the end-to-end coupling (30-nm gap size) of few-μm-long plasmonic gold nanoantennas. We fabricated a series of plasmonic arrays featuring different nanoantenna lengths, spanning from 4.75 μm to 6.75 μm, thus tuning their resonances between approximately 7 and 9 THz. We tested our approach on cadmium sulphide (CdS) nanocrystals (NCs), spin-coated over the array surfaces (Fig. 1a), since these NCs feature a dipole-active (Fröhlich) phonon mode at 7.85 THz. We performed THz transmission measurements using a Fourier-transform THz microscope coupled to synchrotron light (ELETTRA, Trieste), showing the splitting of the nanoantenna resonance into two new vibro-polariton bands, as shown in Fig. 1b. This anti-crossing behaviour represents a distinctive signature of the strong coupling between the plasmon and phonon modes, the splitting (Rabi) at the crossing point being directly related to the coupling strength. More intriguingly, we also observed the phonon resonance modification without any THz illumination, just exploiting the vacuum electric field of the nanocavities [3] (estimated to be as high as 4.6× 105 V/m). To this end, we performed a series of micro-Raman measurements on individual nanocavity areas, finding evidence of the two new hybrid states (P− and P+ in Fig. 1c) even in THz \"dark\" conditions. The evidence of phonon mode splitting both in THz and Raman characterizations confirms the possibility of altering the intrinsic phonon response of a nanomaterial using properly tailored plasmonic resonators, which could open new avenues for the manipulation of energy dissipation in nanodevices. Novel cavity geometries that promise to further boost the strong vibrational coupling in these systems will be presented on site.","PeriodicalId":6714,"journal":{"name":"2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC)","volume":"78 1","pages":"1-1"},"PeriodicalIF":0.0,"publicationDate":"2019-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79300376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Active Control of Femtosecond Soliton Molecules 飞秒孤子分子的主动控制
F. Kurtz, C. Ropers, G. Herink
{"title":"Active Control of Femtosecond Soliton Molecules","authors":"F. Kurtz, C. Ropers, G. Herink","doi":"10.1109/CLEOE-EQEC.2019.8871788","DOIUrl":"https://doi.org/10.1109/CLEOE-EQEC.2019.8871788","url":null,"abstract":"Mode-locked lasers are a paramount example of dissipative nonlinear systems that support bound-states of multiple solitons, often referred as \"soliton molecules\" [1,2,3]. Previously hidden, internal dynamics can now be accessed by employing the time-stretch dispersive Fourier transform (TS-DFT) and spectral interferometry — enabling the tracking of pulse separations and relative phases in real-time [4,5]. Oscillatory internal motions, akin to molecular vibrations, have previously been tracked — prompting the question whether such internal oscillations can be externally excited and ultimately be controlled.","PeriodicalId":6714,"journal":{"name":"2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC)","volume":"7 1","pages":"1-1"},"PeriodicalIF":0.0,"publicationDate":"2019-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84302340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative Study of Harmonic Generation in Air and Argon in Light Filaments Driven by Circularly Polarized Mid-IR Pulses 圆偏振中红外脉冲驱动灯丝中空气和氩气谐波产生的比较研究
V. Shumakova, C. Gollner, A. Voronin, A. Mitrofanov, D. Sidorov-Biryukov, A. Zheltikov, D. Kartashov, A. Baltuska, A. Pugžlys
{"title":"Comparative Study of Harmonic Generation in Air and Argon in Light Filaments Driven by Circularly Polarized Mid-IR Pulses","authors":"V. Shumakova, C. Gollner, A. Voronin, A. Mitrofanov, D. Sidorov-Biryukov, A. Zheltikov, D. Kartashov, A. Baltuska, A. Pugžlys","doi":"10.1109/CLEOE-EQEC.2019.8872486","DOIUrl":"https://doi.org/10.1109/CLEOE-EQEC.2019.8872486","url":null,"abstract":"A generation of optical harmonics by circularly polarized light, which is in general forbidden in an isotropic medium, was recently observed in molecular gases where molecules were aligned and oriented by another linearly polarized laser pulse [1] or by pulses with twisted polarization [2]. In order to generate nth-harmonic with circularly polarized light, a molecule has to \"absorb\" n photons, having the same handedness, and to emit a single nth harmonic photon while fulfilling the energy and the momentum conservation laws, meaning a necessity to excite the molecule to appropriate rotational state. One can do this by means of intrapulse rotational Raman scattering, which prepares the molecule in the excited state through a subsequent absorption of (n-1) same-handed photons [1]. All previously reported experimental studies on circular harmonic generation in molecular gases were performed with visible/near-IR drivers, in either gas jets or in standing cells and with pre-alignment of molecules by an additional laser pulses. Here we report on the studies of self-action of elliptically polarized mid-IR pulses on the generation of low-order harmonics in filaments ignited in air and in argon, representing a molecular and an atomic gas respectively. The harmonics were driven by 20-mJ, sub-100 fs mid-IR pulses, centred at 3.9 pm wavelength. In the experiments filamentation was assisted by focusing light with a spherical mirror of ROC=-2500 mm into an open-end tube, through which Ar gas was flown at slight overpressure. Polarization of the pulses was controlled by a broadband quarter wave plate (QWP). Spectra of 5th and 7th harmonics were recorded after the filaments with a grating spectrometer (HR4000, OceanOptics). Polarization state of the generated harmonics was analysed with a Glan-Taylor polarizer.","PeriodicalId":6714,"journal":{"name":"2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC)","volume":"60 1","pages":"1-1"},"PeriodicalIF":0.0,"publicationDate":"2019-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85054247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultimate Quantum Noise Limit of Frequency Comb Measurements 频率梳测量的量子噪声极限
Ruoyu Liao, Youjian Song, G. Steinmeyer
{"title":"Ultimate Quantum Noise Limit of Frequency Comb Measurements","authors":"Ruoyu Liao, Youjian Song, G. Steinmeyer","doi":"10.1109/CLEOE-EQEC.2019.8872941","DOIUrl":"https://doi.org/10.1109/CLEOE-EQEC.2019.8872941","url":null,"abstract":"Frequency comb measurements have enormously progressed in the last decade, with 10−18 precisions coming into reach [1]. Similar to Moore's law, the precision in frequency metrology measurements has improved by about 3 orders of magnitude in a little bit more than a decade. Along these lines, the question may arise whether there will be continuous improvements for decades to come — or whether, at one point, an ultimate limitation to further improvement arises. Moreover, frequency metrology has proven superior to other methods to evince a drift of fundamental physical constants, e.g., the fine-structure constants, yet no such drift has ever been convincingly proven using either optical [2] or cosmological methods [3]. So the question is: how low can we go before quantum effects impose an ultimate limit for precision frequency metrology?","PeriodicalId":6714,"journal":{"name":"2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC)","volume":"8 1","pages":"1-1"},"PeriodicalIF":0.0,"publicationDate":"2019-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85597597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Laser Printing of a Nano-Imager to Perform Full Optical Machine Learning 实现全光学机器学习的纳米成像仪激光打印
E. Goi, M. Gu
{"title":"Laser Printing of a Nano-Imager to Perform Full Optical Machine Learning","authors":"E. Goi, M. Gu","doi":"10.1109/CLEOE-EQEC.2019.8872773","DOIUrl":"https://doi.org/10.1109/CLEOE-EQEC.2019.8872773","url":null,"abstract":"Applications of artificial intelligence techniques, specifically machine learning and more recently deep learning [1], are transforming several fields ranging from clinical medicine to optical computing. Integrating full-optical neuromorphic architectures in opto-electronic devices (Fig. 1a) will lead to the near-term availability of clinically and industrially relevant applications such as real-time features detection and classification, image processing and optical implementation of computational intensive tasks such as matrix multiplication with low-power consumption, high-accuracy and ultra-fast processing speed [2].","PeriodicalId":6714,"journal":{"name":"2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC)","volume":"14 1","pages":"1-1"},"PeriodicalIF":0.0,"publicationDate":"2019-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85622050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
All-Fiber Mode-Locked Thulium Doped Fiber Laser using a Novel Femtosecond Laser Inscribed 45° Tilted Fiber Grating 采用45°倾斜光纤光栅的新型飞秒激光器实现全光纤锁模掺铥光纤激光器
A. Theodosiou, J. Aubrecht, Nithyanandan Kanagaraj, P. Peterka, K. Kalli, I. Kašík, P. Honzátko
{"title":"All-Fiber Mode-Locked Thulium Doped Fiber Laser using a Novel Femtosecond Laser Inscribed 45° Tilted Fiber Grating","authors":"A. Theodosiou, J. Aubrecht, Nithyanandan Kanagaraj, P. Peterka, K. Kalli, I. Kašík, P. Honzátko","doi":"10.1109/CLEOE-EQEC.2019.8871737","DOIUrl":"https://doi.org/10.1109/CLEOE-EQEC.2019.8871737","url":null,"abstract":"The recent development of mode-locked fiber lasers operating at ∼2μm is accelerating, driven by industrial and medical applications, particularly in the so-called \"eye-safe\" applications of laser surgery, biomedical imaging, medicine and sensing [1]. While being practical devices, given reproducible experimental conditions, fiber lasers continue to be an excellent research avenue to unveil a plethora of complex ultrafast dynamics. Developments on versatile all-fiber laser sources are attractive, due to their increased efficiency, robust and compact configurations. The development of artificial saturable absorbers, such as nonlinear polarization rotation (NPR) based on the optical Kerr effect, has enabled the realization of all-fiber formats. However, in hybrid laser designs, the use of bulk polarizers reduces the perceived advantage of the fiber-based format. In this communication, we employ a recently developed 45° tilted fiber grating (TFG) inscribed using femtosecond laser [2] as an in-line fiber polarizer in an all-fiber laser [3]. This grating inscription process offer advantages over traditional 45°-TFG UV-laser inscription, and is based on plane-by-plane, direct writing using a femtosecond laser, as it neither requires a phase mask nor a hydrogen loading process, as is usually the case.","PeriodicalId":6714,"journal":{"name":"2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC)","volume":"55 1","pages":"1-1"},"PeriodicalIF":0.0,"publicationDate":"2019-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76619032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Optical Properties of AuZr Intermetallic Alloys AuZr金属间合金的光学性能
Hugh Littlehailes, W. Hendren, Stacey Drakeley, R. Bowman, F. Huang
{"title":"The Optical Properties of AuZr Intermetallic Alloys","authors":"Hugh Littlehailes, W. Hendren, Stacey Drakeley, R. Bowman, F. Huang","doi":"10.1109/cleoe-eqec.2019.8873089","DOIUrl":"https://doi.org/10.1109/cleoe-eqec.2019.8873089","url":null,"abstract":"Intermetallic alloys are increasingly attracting attention as important alternative plasmonic materials, due to their high melting temperatures and strong mechanical strength [1]. They are potential candidate materials in applications in harsh environments, such as heat-assisted magnetic recording (HAMR) and photothermal photovoltaics [2,3].","PeriodicalId":6714,"journal":{"name":"2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC)","volume":"45 1","pages":"1-1"},"PeriodicalIF":0.0,"publicationDate":"2019-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80955149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Femtosecond-Laser-Written Waveguide Lasers at ∼2 μm 飞秒激光写入波导激光器在~ 2 μm
X. Mateos, E. Kifle, P. Loiko, C. Romero, J. D. de Aldana, A. Ródenas, S. Y. Choi, J. Bae, F. Rotermund, U. Griebner, V. Petrov, M. Aguiló, F. Díaz
{"title":"Femtosecond-Laser-Written Waveguide Lasers at ∼2 μm","authors":"X. Mateos, E. Kifle, P. Loiko, C. Romero, J. D. de Aldana, A. Ródenas, S. Y. Choi, J. Bae, F. Rotermund, U. Griebner, V. Petrov, M. Aguiló, F. Díaz","doi":"10.1109/cleoe-eqec.2019.8871898","DOIUrl":"https://doi.org/10.1109/cleoe-eqec.2019.8871898","url":null,"abstract":"In this work, we review our recent results on fabrication, optical characterization and continuous-wave and passively Q-switched 2μm laser operation of active waveguides (WGs) produced by femtosecond direct laser writing (fs-DLW) in thulium and holmium doped low-symmetry (monoclinic) crystals. Fs-DLW was performed by 120-fs / 1-kHz pulses at 795 nm [1]. Various depressed-index photonic micro-structures were fabricated, Fig. 1, such as buried channel WGs with circular and hexagonal (lattice-like) cladding, surface WGs with a half-ring cladding, and straight WGs and Y-branch splitters with a rectangular cross-section. The WG core size was in the range 40–100 μm, comprising both fundamental- and multi-mode WGs.","PeriodicalId":6714,"journal":{"name":"2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC)","volume":"15 1","pages":"1-1"},"PeriodicalIF":0.0,"publicationDate":"2019-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86048043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Following the Mechanisms of a Single Water Droplet Drying by Means of Photonic Resonant Structure 利用光子共振结构研究单水滴干燥机理
L. Garnier, H. Lhermite, V. Vié, H. Cormerais, Octave Pin, Quentin Liddell, B. Bêche
{"title":"Following the Mechanisms of a Single Water Droplet Drying by Means of Photonic Resonant Structure","authors":"L. Garnier, H. Lhermite, V. Vié, H. Cormerais, Octave Pin, Quentin Liddell, B. Bêche","doi":"10.1109/CLEOE-EQEC.2019.8872536","DOIUrl":"https://doi.org/10.1109/CLEOE-EQEC.2019.8872536","url":null,"abstract":"We have designed and fabricated integrated photonic micro-resonators (MRs) devices in polymer UV210 on a SiO2 substrate. UV210 is a positive resin that features an absorption band in the deep-UV domain. Such a property allows us to perform photolithography at lower wavelength than the traditional i-line photolithography so as to design smaller and more precise structures [1]. By using such MR as sensor [2,3], we have monitored the evaporation of a sessile water droplet by dynamically tracking its optical transduced signal. To do so, a broadband laser (λ = 790 nm, FWHM = 40 nm) is coupled to a set of MRs through the injection in a tapered access waveguide. The use of a broadband laser allows us to visualize several resonances on the same spectrum, which increases the precision of the data treatment. The water droplet is deposited on the MRs and the transduced signal is acquired during the whole drying process. The output optical signal is monitored by the mean of an optical spectrum analyser with a frequency of acquisition of about 1 Hz.","PeriodicalId":6714,"journal":{"name":"2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC)","volume":"21 1","pages":"1-1"},"PeriodicalIF":0.0,"publicationDate":"2019-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86057845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Controllable Photon-Pair Spectral Correlations 可控光子对光谱关联
M. Cordier, B. Debord, F. Gérôme, P. Delaye, F. Benabid, I. Zaquine
{"title":"Controllable Photon-Pair Spectral Correlations","authors":"M. Cordier, B. Debord, F. Gérôme, P. Delaye, F. Benabid, I. Zaquine","doi":"10.1109/CLEOE-EQEC.2019.8873257","DOIUrl":"https://doi.org/10.1109/CLEOE-EQEC.2019.8873257","url":null,"abstract":"Photon-pair states, whether spectrally correlated or separable, can all be very useful in quantum technology applications. For example, the former are used for improving the security of quantum key distribution, whilst the latter are the backbone in heralded single photon sources. It has been shown that the amount of spectral correlations is well-described by the shape of the Joint Spectral Amplitude function (JSA), which mostly depends on the relative group velocity relation between the pump, signal and idler photons within the source medium [1].","PeriodicalId":6714,"journal":{"name":"2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC)","volume":"13 1","pages":"1-1"},"PeriodicalIF":0.0,"publicationDate":"2019-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77926145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信