Laser Printing of a Nano-Imager to Perform Full Optical Machine Learning

E. Goi, M. Gu
{"title":"Laser Printing of a Nano-Imager to Perform Full Optical Machine Learning","authors":"E. Goi, M. Gu","doi":"10.1109/CLEOE-EQEC.2019.8872773","DOIUrl":null,"url":null,"abstract":"Applications of artificial intelligence techniques, specifically machine learning and more recently deep learning [1], are transforming several fields ranging from clinical medicine to optical computing. Integrating full-optical neuromorphic architectures in opto-electronic devices (Fig. 1a) will lead to the near-term availability of clinically and industrially relevant applications such as real-time features detection and classification, image processing and optical implementation of computational intensive tasks such as matrix multiplication with low-power consumption, high-accuracy and ultra-fast processing speed [2].","PeriodicalId":6714,"journal":{"name":"2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC)","volume":"14 1","pages":"1-1"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLEOE-EQEC.2019.8872773","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Applications of artificial intelligence techniques, specifically machine learning and more recently deep learning [1], are transforming several fields ranging from clinical medicine to optical computing. Integrating full-optical neuromorphic architectures in opto-electronic devices (Fig. 1a) will lead to the near-term availability of clinically and industrially relevant applications such as real-time features detection and classification, image processing and optical implementation of computational intensive tasks such as matrix multiplication with low-power consumption, high-accuracy and ultra-fast processing speed [2].
实现全光学机器学习的纳米成像仪激光打印
人工智能技术的应用,特别是机器学习和最近的深度学习[1],正在改变从临床医学到光学计算等多个领域。在光电器件中集成全光学神经形态架构(图1a)将导致临床和工业相关应用的近期可用性,如实时特征检测和分类、图像处理和计算密集型任务的光学实现,如低功耗、高精度和超快处理速度的矩阵乘法[2]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信