利用光子共振结构研究单水滴干燥机理

L. Garnier, H. Lhermite, V. Vié, H. Cormerais, Octave Pin, Quentin Liddell, B. Bêche
{"title":"利用光子共振结构研究单水滴干燥机理","authors":"L. Garnier, H. Lhermite, V. Vié, H. Cormerais, Octave Pin, Quentin Liddell, B. Bêche","doi":"10.1109/CLEOE-EQEC.2019.8872536","DOIUrl":null,"url":null,"abstract":"We have designed and fabricated integrated photonic micro-resonators (MRs) devices in polymer UV210 on a SiO2 substrate. UV210 is a positive resin that features an absorption band in the deep-UV domain. Such a property allows us to perform photolithography at lower wavelength than the traditional i-line photolithography so as to design smaller and more precise structures [1]. By using such MR as sensor [2,3], we have monitored the evaporation of a sessile water droplet by dynamically tracking its optical transduced signal. To do so, a broadband laser (λ = 790 nm, FWHM = 40 nm) is coupled to a set of MRs through the injection in a tapered access waveguide. The use of a broadband laser allows us to visualize several resonances on the same spectrum, which increases the precision of the data treatment. The water droplet is deposited on the MRs and the transduced signal is acquired during the whole drying process. The output optical signal is monitored by the mean of an optical spectrum analyser with a frequency of acquisition of about 1 Hz.","PeriodicalId":6714,"journal":{"name":"2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC)","volume":"21 1","pages":"1-1"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Following the Mechanisms of a Single Water Droplet Drying by Means of Photonic Resonant Structure\",\"authors\":\"L. Garnier, H. Lhermite, V. Vié, H. Cormerais, Octave Pin, Quentin Liddell, B. Bêche\",\"doi\":\"10.1109/CLEOE-EQEC.2019.8872536\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have designed and fabricated integrated photonic micro-resonators (MRs) devices in polymer UV210 on a SiO2 substrate. UV210 is a positive resin that features an absorption band in the deep-UV domain. Such a property allows us to perform photolithography at lower wavelength than the traditional i-line photolithography so as to design smaller and more precise structures [1]. By using such MR as sensor [2,3], we have monitored the evaporation of a sessile water droplet by dynamically tracking its optical transduced signal. To do so, a broadband laser (λ = 790 nm, FWHM = 40 nm) is coupled to a set of MRs through the injection in a tapered access waveguide. The use of a broadband laser allows us to visualize several resonances on the same spectrum, which increases the precision of the data treatment. The water droplet is deposited on the MRs and the transduced signal is acquired during the whole drying process. The output optical signal is monitored by the mean of an optical spectrum analyser with a frequency of acquisition of about 1 Hz.\",\"PeriodicalId\":6714,\"journal\":{\"name\":\"2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC)\",\"volume\":\"21 1\",\"pages\":\"1-1\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CLEOE-EQEC.2019.8872536\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLEOE-EQEC.2019.8872536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们在SiO2衬底上设计并制造了基于聚合物UV210的集成光子微谐振器(MRs)器件。UV210是一种具有深紫外吸收带的正性树脂。这种特性使我们能够在比传统的i线光刻更低的波长下进行光刻,从而设计出更小、更精确的结构[1]。通过使用像传感器这样的MR[2,3],我们通过动态跟踪其光学转导信号来监测一个固定水滴的蒸发。为此,宽带激光器(λ = 790 nm, FWHM = 40 nm)通过注入锥形接入波导与一组MRs耦合。宽带激光的使用使我们能够在同一光谱上看到几个共振,这增加了数据处理的精度。在整个干燥过程中,水滴沉积在磁流变仪上,并获得转导信号。输出光信号由光谱分析仪的平均值监测,其采集频率约为1hz。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Following the Mechanisms of a Single Water Droplet Drying by Means of Photonic Resonant Structure
We have designed and fabricated integrated photonic micro-resonators (MRs) devices in polymer UV210 on a SiO2 substrate. UV210 is a positive resin that features an absorption band in the deep-UV domain. Such a property allows us to perform photolithography at lower wavelength than the traditional i-line photolithography so as to design smaller and more precise structures [1]. By using such MR as sensor [2,3], we have monitored the evaporation of a sessile water droplet by dynamically tracking its optical transduced signal. To do so, a broadband laser (λ = 790 nm, FWHM = 40 nm) is coupled to a set of MRs through the injection in a tapered access waveguide. The use of a broadband laser allows us to visualize several resonances on the same spectrum, which increases the precision of the data treatment. The water droplet is deposited on the MRs and the transduced signal is acquired during the whole drying process. The output optical signal is monitored by the mean of an optical spectrum analyser with a frequency of acquisition of about 1 Hz.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信