{"title":"Quantization Networks","authors":"Jiwei Yang, Xu Shen, Jun Xing, Xinmei Tian, Houqiang Li, Bing Deng, Jianqiang Huang, Xiansheng Hua","doi":"10.1109/CVPR.2019.00748","DOIUrl":"https://doi.org/10.1109/CVPR.2019.00748","url":null,"abstract":"Although deep neural networks are highly effective, their high computational and memory costs severely hinder their applications to portable devices. As a consequence, lowbit quantization, which converts a full-precision neural network into a low-bitwidth integer version, has been an active and promising research topic. Existing methods formulate the low-bit quantization of networks as an approximation or optimization problem. Approximation-based methods confront the gradient mismatch problem, while optimizationbased methods are only suitable for quantizing weights and can introduce high computational cost during the training stage. In this paper, we provide a simple and uniform way for weights and activations quantization by formulating it as a differentiable non-linear function. The quantization function is represented as a linear combination of several Sigmoid functions with learnable biases and scales that could be learned in a lossless and end-to-end manner via continuous relaxation of the steepness of Sigmoid functions. Extensive experiments on image classification and object detection tasks show that our quantization networks outperform state-of-the-art methods. We believe that the proposed method will shed new lights on the interpretation of neural network quantization.","PeriodicalId":6711,"journal":{"name":"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"1 1","pages":"7300-7308"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89810205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Multi-Task Self-Supervised Object Detection via Recycling of Bounding Box Annotations","authors":"Wonhee Lee, Joonil Na, Gunhee Kim","doi":"10.1109/CVPR.2019.00512","DOIUrl":"https://doi.org/10.1109/CVPR.2019.00512","url":null,"abstract":"In spite of recent enormous success of deep convolutional networks in object detection, they require a large amount of bounding box annotations, which are often time-consuming and error-prone to obtain. To make better use of given limited labels, we propose a novel object detection approach that takes advantage of both multi-task learning (MTL) and self-supervised learning (SSL). We propose a set of auxiliary tasks that help improve the accuracy of object detection. They create their own labels by recycling the bounding box labels (i.e. annotations of the main task) in an SSL manner, and are jointly trained with the object detection model in an MTL way. Our approach is integrable with any region proposal based detection models. We empirically validate that our approach effectively improves detection performance on various architectures and datasets. We test two state-of-the-art region proposal object detectors, including Faster R-CNN and R-FCN, with three CNN backbones of ResNet-101, Inception-ResNet-v2, and MobileNet on two benchmark datasets of PASCAL VOC and COCO.","PeriodicalId":6711,"journal":{"name":"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"82 1","pages":"4979-4988"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86512229","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mixed Effects Neural Networks (MeNets) With Applications to Gaze Estimation","authors":"Yunyang Xiong, Hyunwoo Kim, Vikas Singh","doi":"10.1109/CVPR.2019.00793","DOIUrl":"https://doi.org/10.1109/CVPR.2019.00793","url":null,"abstract":"There is much interest in computer vision to utilize commodity hardware for gaze estimation. A number of papers have shown that algorithms based on deep convolutional architectures are approaching accuracies where streaming data from mass-market devices can offer good gaze tracking performance, although a gap still remains between what is possible and the performance users will expect in real deployments. We observe that one obvious avenue for improvement relates to a gap between some basic technical assumptions behind most existing approaches and the statistical properties of the data used for training. Specifically, most training datasets involve tens of users with a few hundreds (or more) repeated acquisitions per user. The non i.i.d. nature of this data suggests better estimation may be possible if the model explicitly made use of such “repeated measurements” from each user as is commonly done in classical statistical analysis using so-called mixed effects models. The goal of this paper is to adapt these “mixed effects” ideas from statistics within a deep neural network architecture for gaze estimation, based on eye images. Such a formulation seeks to specifically utilize information regarding the hierarchical structure of the training data — each node in the hierarchy is a user who provides tens or hundreds of repeated samples. This modification yields an architecture that offers state of the art performance on various publicly available datasets improving results by 10-20%.","PeriodicalId":6711,"journal":{"name":"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"8 1","pages":"7735-7744"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86589474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cross-Modality Personalization for Retrieval","authors":"Nils Murrugarra-Llerena, Adriana Kovashka","doi":"10.1109/CVPR.2019.00659","DOIUrl":"https://doi.org/10.1109/CVPR.2019.00659","url":null,"abstract":"Existing captioning and gaze prediction approaches do not consider the multiple facets of personality that affect how a viewer extracts meaning from an image. While there are methods that consider personalized captioning, they do not consider personalized perception across modalities, i.e. how a person's way of looking at an image (gaze) affects the way they describe it (captioning). In this work, we propose a model for modeling cross-modality personalized retrieval. In addition to modeling gaze and captions, we also explicitly model the personality of the users providing these samples. We incorporate constraints that encourage gaze and caption samples on the same image to be close in a learned space; we refer to this as content modeling. We also model style: we encourage samples provided by the same user to be close in a separate embedding space, regardless of the image on which they were provided. To leverage the complementary information that content and style constraints provide, we combine the embeddings from both networks. We show that our combined embeddings achieve better performance than existing approaches for cross-modal retrieval.","PeriodicalId":6711,"journal":{"name":"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"1 1","pages":"6422-6431"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89055100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Blind Geometric Distortion Correction on Images Through Deep Learning","authors":"Xiaoyu Li, Bo Zhang, P. Sander, Jing Liao","doi":"10.1109/CVPR.2019.00499","DOIUrl":"https://doi.org/10.1109/CVPR.2019.00499","url":null,"abstract":"We propose the first general framework to automatically correct different types of geometric distortion in a single input image. Our proposed method employs convolutional neural networks (CNNs) trained by using a large synthetic distortion dataset to predict the displacement field between distorted images and corrected images. A model fitting method uses the CNN output to estimate the distortion parameters, achieving a more accurate prediction. The final corrected image is generated based on the predicted flow using an efficient, high-quality resampling method. Experimental results demonstrate that our algorithm outperforms traditional correction methods, and allows for interesting applications such as distortion transfer, distortion exaggeration, and co-occurring distortion correction.","PeriodicalId":6711,"journal":{"name":"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"24 1","pages":"4850-4859"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88113613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhixiang Wang, Zheng Wang, Yinqiang Zheng, Yung-Yu Chuang, S. Satoh
{"title":"Learning to Reduce Dual-Level Discrepancy for Infrared-Visible Person Re-Identification","authors":"Zhixiang Wang, Zheng Wang, Yinqiang Zheng, Yung-Yu Chuang, S. Satoh","doi":"10.1109/CVPR.2019.00071","DOIUrl":"https://doi.org/10.1109/CVPR.2019.00071","url":null,"abstract":"Infrared-Visible person RE-IDentification (IV-REID) is a rising task. Compared to conventional person re-identification (re-ID), IV-REID concerns the additional modality discrepancy originated from the different imaging processes of spectrum cameras, in addition to the person's appearance discrepancy caused by viewpoint changes, pose variations and deformations presented in the conventional re-ID task. The co-existed discrepancies make IV-REID more difficult to solve. Previous methods attempt to reduce the appearance and modality discrepancies simultaneously using feature-level constraints. It is however difficult to eliminate the mixed discrepancies using only feature-level constraints. To address the problem, this paper introduces a novel Dual-level Discrepancy Reduction Learning (D$^2$RL) scheme which handles the two discrepancies separately. For reducing the modality discrepancy, an image-level sub-network is trained to translate an infrared image into its visible counterpart and a visible image to its infrared version. With the image-level sub-network, we can unify the representations for images with different modalities. With the help of the unified multi-spectral images, a feature-level sub-network is trained to reduce the remaining appearance discrepancy through feature embedding. By cascading the two sub-networks and training them jointly, the dual-level reductions take their responsibilities cooperatively and attentively. Extensive experiments demonstrate the proposed approach outperforms the state-of-the-art methods.","PeriodicalId":6711,"journal":{"name":"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"4 1","pages":"618-626"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86631152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nieves Crasto, Philippe Weinzaepfel, Alahari Karteek, C. Schmid
{"title":"MARS: Motion-Augmented RGB Stream for Action Recognition","authors":"Nieves Crasto, Philippe Weinzaepfel, Alahari Karteek, C. Schmid","doi":"10.1109/CVPR.2019.00807","DOIUrl":"https://doi.org/10.1109/CVPR.2019.00807","url":null,"abstract":"Most state-of-the-art methods for action recognition consist of a two-stream architecture with 3D convolutions: an appearance stream for RGB frames and a motion stream for optical flow frames. Although combining flow with RGB improves the performance, the cost of computing accurate optical flow is high, and increases action recognition latency. This limits the usage of two-stream approaches in real-world applications requiring low latency. In this paper, we introduce two learning approaches to train a standard 3D CNN, operating on RGB frames, that mimics the motion stream, and as a result avoids flow computation at test time. First, by minimizing a feature-based loss compared to the Flow stream, we show that the network reproduces the motion stream with high fidelity. Second, to leverage both appearance and motion information effectively, we train with a linear combination of the feature-based loss and the standard cross-entropy loss for action recognition. We denote the stream trained using this combined loss as Motion-Augmented RGB Stream (MARS). As a single stream, MARS performs better than RGB or Flow alone, for instance with 72.7% accuracy on Kinetics compared to 72.0% and 65.6% with RGB and Flow streams respectively.","PeriodicalId":6711,"journal":{"name":"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"86 1","pages":"7874-7883"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87421490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Single Image Depth Estimation Trained via Depth From Defocus Cues","authors":"Shir Gur, Lior Wolf","doi":"10.1109/CVPR.2019.00787","DOIUrl":"https://doi.org/10.1109/CVPR.2019.00787","url":null,"abstract":"Estimating depth from a single RGB images is a fundamental task in computer vision, which is most directly solved using supervised deep learning. In the field of unsupervised learning of depth from a single RGB image, depth is not given explicitly. Existing work in the field receives either a stereo pair, a monocular video, or multiple views, and, using losses that are based on structure-from-motion, trains a depth estimation network. In this work, we rely, instead of different views, on depth from focus cues. Learning is based on a novel Point Spread Function convolutional layer, which applies location specific kernels that arise from the Circle-Of-Confusion in each image location. We evaluate our method on data derived from five common datasets for depth estimation and lightfield images, and present results that are on par with supervised methods on KITTI and Make3D datasets and outperform unsupervised learning approaches. Since the phenomenon of depth from defocus is not dataset specific, we hypothesize that learning based on it would overfit less to the specific content in each dataset. Our experiments show that this is indeed the case, and an estimator learned on one dataset using our method provides better results on other datasets, than the directly supervised methods.","PeriodicalId":6711,"journal":{"name":"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"48 1","pages":"7675-7684"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79058977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Balanced Self-Paced Learning for Generative Adversarial Clustering Network","authors":"Kamran Ghasedi, Xiaoqian Wang, Cheng Deng, Heng Huang","doi":"10.1109/CVPR.2019.00452","DOIUrl":"https://doi.org/10.1109/CVPR.2019.00452","url":null,"abstract":"Clustering is an important problem in various machine learning applications, but still a challenging task when dealing with complex real data. The existing clustering algorithms utilize either shallow models with insufficient capacity for capturing the non-linear nature of data, or deep models with large number of parameters prone to overfitting. In this paper, we propose a deep Generative Adversarial Clustering Network (ClusterGAN), which tackles the problems of training of deep clustering models in unsupervised manner. emph{ClusterGAN} consists of three networks, a discriminator, a generator and a clusterer (i.e. a clustering network). We employ an adversarial game between these three players to synthesize realistic samples given discriminative latent variables via the generator, and learn the inverse mapping of the real samples to the discriminative embedding space via the clusterer. Moreover, we utilize a conditional entropy minimization loss to increase/decrease the similarity of intra/inter cluster samples. Since the ground-truth similarities are unknown in clustering task, we propose a novel balanced self-paced learning algorithm to gradually include samples into training from easy to difficult, while considering the diversity of selected samples from all clusters. Therefore, our method makes it possible to efficiently train clusterers with large depth by leveraging the proposed adversarial game and balanced self-paced learning algorithm. According our experiments, ClusterGAN achieves competitive results compared to the state-of-the-art clustering and hashing models on several datasets.","PeriodicalId":6711,"journal":{"name":"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"432 1","pages":"4386-4395"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76543480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"All-Weather Deep Outdoor Lighting Estimation","authors":"Jinsong Zhang, Kalyan Sunkavalli, Yannick Hold-Geoffroy, Sunil Hadap, Jonathan Eisenmann, Jean-François Lalonde","doi":"10.1109/CVPR.2019.01040","DOIUrl":"https://doi.org/10.1109/CVPR.2019.01040","url":null,"abstract":"We present a neural network that predicts HDR outdoor illumination from a single LDR image. At the heart of our work is a method to accurately learn HDR lighting from LDR panoramas under any weather condition. We achieve this by training another CNN (on a combination of synthetic and real images) to take as input an LDR panorama, and regress the parameters of the Lalonde-Mathews outdoor illumination model. This model is trained such that it a) reconstructs the appearance of the sky, and b) renders the appearance of objects lit by this illumination. We use this network to label a large-scale dataset of LDR panoramas with lighting parameters and use them to train our single image outdoor lighting estimation network. We demonstrate, via extensive experiments, that both our panorama and singe image networks outperform the state of the art, and unlike prior work, are able to handle weather conditions ranging from fully sunny to overcast skies.","PeriodicalId":6711,"journal":{"name":"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"76 1","pages":"10150-10158"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79706160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}