Brain Science Advances最新文献

筛选
英文 中文
Cortico–subcortical spatiotemporal dynamics in Parkinson’s disease can be modulated by transcranial alternating current stimulation 帕金森病的皮层-皮层下时空动力学可以通过经颅交流电刺激进行调节
Brain Science Advances Pub Date : 2023-06-01 DOI: 10.26599/BSA.2023.9050009
Tiantian Liu, Zilong Yan, Ziteng Han, Jian Zhang, Boyan Fang, Tianyi Yan
{"title":"Cortico–subcortical spatiotemporal dynamics in Parkinson’s disease can be modulated by transcranial alternating current stimulation","authors":"Tiantian Liu, Zilong Yan, Ziteng Han, Jian Zhang, Boyan Fang, Tianyi Yan","doi":"10.26599/BSA.2023.9050009","DOIUrl":"https://doi.org/10.26599/BSA.2023.9050009","url":null,"abstract":"Objective: We investigated changes in cortico–subcortical spatiotemporal dynamics to explore the treatment mechanisms of transcranial alternating current stimulation (tACS) in patients with Parkinson’s disease (PD). Methods: Resting-state functional magnetic resonance imaging (rs-fMRI) data were collected from 20 patients with PD and 20 normal controls (NC). Each patient with PD received successive multidisciplinary intensive rehabilitation treatment and tACS treatment over a one-year interval. Individual functional brain network mapping and co-activation pattern (CAP) analysis were performed to characterize cortico–subcortical dynamics. Results: The same tACS electrode placement stimulated different proportions of functional brain networks across the participants. CAP analysis revealed that the visual network, attentional network, and default mode network co-activated with the thalamus, accumbens, and amygdala, respectively. The pattern characterized by the de-activation of the visual network and the activation of the thalamus showed a significantly low amplitude in the patients with PD than in NCs, and this amplitude increased after tACS treatment. Furthermore, the co-occurrence of cortico–subcortical CAPs was significantly higher in patients with PD than in NCs and decreased after tACS treatment. Conclusions: This study investigated cortico–subcortical spatiotemporal dynamics in patients with PD and further revealed the tACS treatment mechanism. These findings contribute to understanding cortico– subcortical dynamics and exploring noninvasive neuromodulation targets of cortico–subcortical circuits in brain diseases, such as PD, Alzheimer’s disease, and depression.","PeriodicalId":67062,"journal":{"name":"Brain Science Advances","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43749822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
The altered network complexity of resting-state functional brain activity in schizophrenia and bipolar disorder patients 精神分裂症和双相情感障碍患者静息状态功能性脑活动网络复杂性的改变
Brain Science Advances Pub Date : 2023-06-01 DOI: 10.26599/BSA.2023.9050007
Yan Niu, N. Zhang, Mengni Zhou, Lan Yang, Jie Sun, Xue-Qing Cheng, Yanan Li, Lefan Guo, Jie Xiang, Bin Wang
{"title":"The altered network complexity of resting-state functional brain activity in schizophrenia and bipolar disorder patients","authors":"Yan Niu, N. Zhang, Mengni Zhou, Lan Yang, Jie Sun, Xue-Qing Cheng, Yanan Li, Lefan Guo, Jie Xiang, Bin Wang","doi":"10.26599/BSA.2023.9050007","DOIUrl":"https://doi.org/10.26599/BSA.2023.9050007","url":null,"abstract":"Schizophrenia (SZ) and bipolar disorder (BD) are two of the most frequent mental disorders. These disorders exhibit similar psychotic symptoms, making diagnosis challenging and leading to misdiagnosis. Yet, the network complexity changes driving spontaneous brain activity in SZ and BD patients are still unknown. Functional entropy (FE) is a novel way of measuring the dispersion (or spread) of functional connectivities inside the brain. The FE was utilized in this study to examine the network complexity of the resting-state fMRI data of SZ and BD patients at three levels, including global, modules, and nodes. At three levels, the FE of SZ and BD patients was considerably lower than that of normal control (NC). At the intra-module level, the FE of SZ was substantially higher than that of BD in the cingulo-opercular network. Moreover, a strong negative association between FE and clinical measures was discovered in patient groups. Finally, we classified using the FE features and attained an accuracy of 66.7% (BD vs. SZ vs. NC) and an accuracy of 75.0% (SZ vs. BD). These findings proposed that network connectivity’s complexity analyses using FE can provide important insights for the diagnosis of mental illness.","PeriodicalId":67062,"journal":{"name":"Brain Science Advances","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45530057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
High amplitude high frequency oscillations during posttraumatic epileptogenesis 创伤后癫痫发生时的高振幅高频振荡
Brain Science Advances Pub Date : 2023-03-01 DOI: 10.26599/bsa.2023.9050006
Jagannathan Rangarajan, Udaya Kumar
{"title":"High amplitude high frequency oscillations during posttraumatic epileptogenesis","authors":"Jagannathan Rangarajan, Udaya Kumar","doi":"10.26599/bsa.2023.9050006","DOIUrl":"https://doi.org/10.26599/bsa.2023.9050006","url":null,"abstract":"","PeriodicalId":67062,"journal":{"name":"Brain Science Advances","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41589750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Activatable molecular fluorescence probes for the imaging and detection of ischemic stroke 可激活分子荧光探针用于缺血性脑卒中的成像和检测
Brain Science Advances Pub Date : 2023-02-27 DOI: 10.26599/BSA.2023.9050003
Mengdie Wang, Yan Zhang
{"title":"Activatable molecular fluorescence probes for the imaging and detection of ischemic stroke","authors":"Mengdie Wang, Yan Zhang","doi":"10.26599/BSA.2023.9050003","DOIUrl":"https://doi.org/10.26599/BSA.2023.9050003","url":null,"abstract":"The real-time, noninvasive, nonionizing, high spatiotemporal resolution, and flexibility characteristics of molecular fluorescence imaging provide a uniquely powerful approach to imaging and monitoring the physiology and pathophysiology of ischemic stroke. Currently, various fluorescence probes have been synthesized with the aim of improving quantitative and quantitative studies of the pathologic processes of ischemic stroke in living animals. In this review, we present an overview of current activatable fluorescence probes for the imaging and diagnosis of ischemic stroke in animal models. We categorize the probes based on their activatable signals from the biomarkers associated with ischemic stroke, and we present representative examples of their functional mechanisms. Finally, we briefly discuss future perspectives in this field.","PeriodicalId":67062,"journal":{"name":"Brain Science Advances","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46549242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
NMDARs regulate the excitatory-inhibitory balance within neural circuits NMDARs调节神经回路内的兴奋-抑制平衡
Brain Science Advances Pub Date : 2023-02-27 DOI: 10.26599/BSA.2022.9050020
Liang Zhou, Xiaohui Sun, Jingjing Duan
{"title":"NMDARs regulate the excitatory-inhibitory balance within neural circuits","authors":"Liang Zhou, Xiaohui Sun, Jingjing Duan","doi":"10.26599/BSA.2022.9050020","DOIUrl":"https://doi.org/10.26599/BSA.2022.9050020","url":null,"abstract":"Excitatory-inhibitory (E/I) balance is essential for normal neural development, behavior and cognition. E/I imbalance leads to a variety of neurological disorders, such as autism and schizophrenia. NMDA receptors (NMDARs) regulate AMPAR-mediated excitatory and GABAAR-mediated inhibitory synaptic transmission, suggesting that NMDARs play an important role in the establishment and maintenance of the E/I balance. In this review, we briefly introduced NMDARs, AMPARs and GABAARs, summarized the current studies on E/I balance mediated by NMDARs, and discussed the current advances in NMDAR-mediated AMPAR and GABAAR development. Specifically, we analyzed the role of NMDAR subunits in the establishment and maintenance of E/I balance, which may provide new therapeutic strategies for the recovery of E/I imbalance in neurological disorders.","PeriodicalId":67062,"journal":{"name":"Brain Science Advances","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41594261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Substrate stiffness in nerve cells 神经细胞的基质硬度
Brain Science Advances Pub Date : 2023-02-27 DOI: 10.26599/BSA.2023.9050002
Weijin Si, J. Gong, Xiaofei Yang
{"title":"Substrate stiffness in nerve cells","authors":"Weijin Si, J. Gong, Xiaofei Yang","doi":"10.26599/BSA.2023.9050002","DOIUrl":"https://doi.org/10.26599/BSA.2023.9050002","url":null,"abstract":"Recently, substrate stiffness has been involved in the physiology and pathology of the nervous system. However, the role and function of substrate stiffness remain unclear. Here, we review known effects of substrate stiffness on nerve cell morphology and function in the central and peripheral nervous systems and their involvement in pathology. We hope this review will clarify the research status of substrate stiffness in nerve cells and neurological disorder.","PeriodicalId":67062,"journal":{"name":"Brain Science Advances","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47460008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
The regulation of host cytoskeleton during SARS-CoV-2 infection in the nervous system 神经系统感染SARS-CoV-2时宿主细胞骨架的调控
Brain Science Advances Pub Date : 2023-02-27 DOI: 10.26599/BSA.2023.9050004
Qian Zhang, Yaming Jiu
{"title":"The regulation of host cytoskeleton during SARS-CoV-2 infection in the nervous system","authors":"Qian Zhang, Yaming Jiu","doi":"10.26599/BSA.2023.9050004","DOIUrl":"https://doi.org/10.26599/BSA.2023.9050004","url":null,"abstract":"The global economy and public health are currently under enormous pressure since the outbreak of COVID-19. Apart from respiratory discomfort, a subpopulation of COVID-19 patients exhibits neurological symptoms such as headache, myalgia, and loss of smell. Some have even shown encephalitis and necrotizing hemorrhagic encephalopathy. The cytoskeleton of nerve cells changes drastically in these pathologies, indicating that the cytoskeleton and its related proteins are closely related to the pathogenesis of nervous system diseases. In this review, we present the up-to-date association between host cytoskeleton and coronavirus infection in the context of the nervous system. We systematically summarize cytoskeleton-related pathogen-host interactions in both the peripheral and central nervous systems, hoping to contribute to the development of clinical treatment in COVID-19 patients.","PeriodicalId":67062,"journal":{"name":"Brain Science Advances","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47825495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Neuronal excitation regulation and beyond 神经元兴奋调节及其他
Brain Science Advances Pub Date : 2023-02-27 DOI: 10.26599/BSA.2023.9050005
Shangbang Gao, Yan Zhang
{"title":"Neuronal excitation regulation and beyond","authors":"Shangbang Gao, Yan Zhang","doi":"10.26599/BSA.2023.9050005","DOIUrl":"https://doi.org/10.26599/BSA.2023.9050005","url":null,"abstract":"Human brain is composed by 10 billion of neurons","PeriodicalId":67062,"journal":{"name":"Brain Science Advances","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48217435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
BK channels in microglia 小胶质细胞中的BK通道
Brain Science Advances Pub Date : 2022-12-01 DOI: 10.26599/BSA.2023.9050001
Xiaohui Sun
{"title":"BK channels in microglia","authors":"Xiaohui Sun","doi":"10.26599/BSA.2023.9050001","DOIUrl":"https://doi.org/10.26599/BSA.2023.9050001","url":null,"abstract":"Large-conductance calcium- and voltage-dependent potassium (BK) channels are ubiquitously expressed in mammalian cells and participate in various physiological and pathological processes such as neurotransmission and cerebral ischemia. BK channels comprise up to four pore-forming α subunits and zero to four accessory subunits. Although microglial BK currents were initially recorded 27 years ago, their roles have long been elusive. Studies have demonstrated that BK channels modulate the activation, phagocytosis, and probably migration of microglia and have associated microglial BK channels with many neurological diseases, including neuropathic pain and stroke. This review summarizes the available information regarding the biophysical, functional, and pathological aspects of microglial BK channels and discusses future directions of research into these channels.","PeriodicalId":67062,"journal":{"name":"Brain Science Advances","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42148782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Circadian dysregulation and Alzheimer’s disease: A comprehensive review 昼夜节律失调与阿尔茨海默病:一项全面的综述
Brain Science Advances Pub Date : 2022-11-30 DOI: 10.26599/BSA.2022.9050021
Peter Iacobelli
{"title":"Circadian dysregulation and Alzheimer’s disease: A comprehensive review","authors":"Peter Iacobelli","doi":"10.26599/BSA.2022.9050021","DOIUrl":"https://doi.org/10.26599/BSA.2022.9050021","url":null,"abstract":"Alzheimer’s disease (AD), the foremost variant of dementia, has been associated with a menagerie of risk factors, many of which are considered to be modifiable. Among these modifiable risk factors is circadian rhythm, the chronobiological system that regulates sleep‐wake cycles, food consumption timing, hydration timing, and immune responses amongst many other necessary physiological processes. Circadian rhythm at the level of the suprachiasmatic nucleus (SCN), is tightly regulated in the human body by a host of biomolecular substances, principally the hormones melatonin, cortisol, and serotonin. In addition, photic information projected along afferent pathways to the SCN and peripheral oscillators regulates the synthesis of these hormones and mediates the manner in which they act on the SCN and its substructures. Dysregulation of this cycle, whether induced by environmental changes involving irregular exposure to light, or through endogenous pathology, will have a negative impact on immune system optimization and will heighten the deposition of Aβ and the hyperphosphorylation of the tau protein. Given these correlations, it appears that there is a physiologic association between circadian rhythm dysregulation and AD. This review will explore the physiology of circadian dysregulation in the AD brain, and will propose a basic model for its role in AD‐typical pathology, derived from the literature compiled and referenced throughout.","PeriodicalId":67062,"journal":{"name":"Brain Science Advances","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43910306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信