{"title":"Combined experimental and molecular dynamics approach towards a rational design of the YfeX biocatalyst for enhanced carbene transferase reactivity†","authors":"","doi":"10.1039/d3cy01489d","DOIUrl":"10.1039/d3cy01489d","url":null,"abstract":"<div><div>Pharmaceutical synthesis has been a driving force behind advancements in the field of biocatalysis. In this paper, we report the further optimization of the heme protein YfeX for regio- and stereoselective carbene transfer reactions using mutagenesis to explore the role of important amino acids in the active site for catalysis. In this way, we identified YfeX variants that are efficient and selective carbene transferases towards primary and secondary amines, olefins, and indoles. Molecular dynamic simulations reveal that mutations within the second coordination sphere induce distinct alterations in the conformation and electrostatic properties within the active site. These changes, in turn, affect substrate positioning both within the active site and at its entrance, which explains the distinct and sometimes surprising variations in selectivity observed experimentally between select YfeX variants. Our results show that the I230A single variant identified here is one of the most active N–H insertion catalysts known, producing >90% yields <em>in only 1 hour</em> (typical reaction times in the literature are 8–24 hours). On the other hand, the R232A variant catalyzes the C–H insertion of unprotected indole in up to 21% yield. The capacity to selectively act on unprotected indole offers a cost-effective, environmentally-friendly approach for late-stage functionalization of indoles and similar precursors in pharmaceuticals. In addition, YfeX is an efficient and fast biocatalyst that shows no structural degradation or heme loss during turnover, underscoring YfeX's robustness as a viable biocatalyst for both industrial and academic applications.</div></div>","PeriodicalId":66,"journal":{"name":"Catalysis Science & Technology","volume":"14 18","pages":"Pages 5218-5233"},"PeriodicalIF":4.4,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/cy/d3cy01489d?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141549688","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alma Arévalo , Enrique Juárez-Francisco , Diego A. Roa , Marcos Flores-Alamo , Juventino J. García
{"title":"New mononuclear Cu(i) compounds: synthesis, characterization, and application to the electroreduction of CO2†","authors":"Alma Arévalo , Enrique Juárez-Francisco , Diego A. Roa , Marcos Flores-Alamo , Juventino J. García","doi":"10.1039/d4cy00759j","DOIUrl":"10.1039/d4cy00759j","url":null,"abstract":"<div><div>This report includes the preparation of a new set of well-defined Cu(<span>i</span>) catalytic precursors of the type [Cu(diphosphine)(PPh<sub>3</sub>)NO<sub>3</sub>] and [Cu(diphosphine)NO<sub>3</sub>], fully characterized by regular analytical methods, including single-crystal XRD (X-ray diffraction). The new compounds were assessed to activate CO<sub>2</sub> in an electrocatalytic process to yield oxalate selectively and with a relatively low overpotential. Some mechanistic insights into this process are also provided; oxalate is a valuable product for further chemical applications.</div></div>","PeriodicalId":66,"journal":{"name":"Catalysis Science & Technology","volume":"14 18","pages":"Pages 5394-5404"},"PeriodicalIF":4.4,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/cy/d4cy00759j?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141936829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Electrocatalytic reduction of nitrite to ammonium ion using Ni(ii) complexes with redox-active di(imino)pyridine ligands†","authors":"Somayeh Norouzinyanlakvan , Jeffrey Ovens , Darrin Richeson","doi":"10.1039/d4cy00715h","DOIUrl":"10.1039/d4cy00715h","url":null,"abstract":"<div><div>Human disruption of the nitrogen cycle motivates the exploration into electrocatalytic reduction of nitrite. Homogeneous Ni(<span>ii</span>) complexes with tridentate redox-active bis(imino)pyridine ligands demonstrated high effectiveness and selectivity for electrocatalytic reduction of nitrite to the ammonium ion and hydroxylamine in solutions buffered with 4-morpholinepropanesulfonic acid (MOPS). Controlled potential coulometry at −1.4 V <em>vs.</em> Fc<sup>0/+</sup> predominantly produced the ammonium ion with Faradaic efficiencies of ≥50%. Foot-of-the-wave analysis yielded calculated turn-over frequencies ranging from 790 to 850 s<sup>−1</sup>. Computational investigations of the catalytic mechanism provided insights into the proposed chemical steps and detailed the energetics of electron and proton transfers.</div></div>","PeriodicalId":66,"journal":{"name":"Catalysis Science & Technology","volume":"14 18","pages":"Pages 5422-5429"},"PeriodicalIF":4.4,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141936837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aijia Wang , Shuyun Wang , Chen Zhang , Haopeng Luo , Zihan Chen , Fang Jiang , Huan Chen
{"title":"Fabrication of oxygen vacancy-rich BiO2− x/multi-walled carbon nanotubes with enhanced photothermal catalytic antibacterial performance†","authors":"Aijia Wang , Shuyun Wang , Chen Zhang , Haopeng Luo , Zihan Chen , Fang Jiang , Huan Chen","doi":"10.1039/d4cy00528g","DOIUrl":"10.1039/d4cy00528g","url":null,"abstract":"<div><div>Photothermal catalytic sterilization technology is a promising approach due to its high efficiency, environmental friendliness, and stability. Herein, the composites of oxygen vacancy-rich BiO<sub>2− x</sub> and multi-walled carbon nanotubes (BiO<sub>2− x</sub>/CNTs) were prepared, and their photothermal bactericidal ability under near-infrared (NIR) light was investigated. The experimental results showed that the photothermal response of BiO<sub>2− x</sub> was significantly improved after CNT combination. And the surface of the catalyst reached nearly 60 °C in a short time under NIR light irradiation. The photothermal catalytic activity of BiO<sub>2− x</sub>/CNTs was tested with <em>Escherichia coli</em> as the target pathogen. It was observed that BiO<sub>2− x</sub>/CNTs exhibited excellent sterilization effects, killing 99% of <em>E. coli</em> within three hours, which was attributed to the reactive oxygen species produced by the lattice oxygen release of BiO<sub>2− x</sub>. The results of radical quenching experiment and electron paramagnetic resonance (EPR) indicated that the main active substance was a superoxide free radical (˙O<sub>2</sub><sup>−</sup>), which caused the complete irreversible death of <em>E. coli</em> K-12 by destroying the cell membrane function. The BiO<sub>2− x</sub>/CNT catalyst showed excellent photothermal and bactericidal properties under NIR light, which provided a new idea for the application of solar-driven photothermal catalysis in bactericidal processes.</div></div>","PeriodicalId":66,"journal":{"name":"Catalysis Science & Technology","volume":"14 18","pages":"Pages 5331-5341"},"PeriodicalIF":4.4,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141872292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Thijs van Raak , Huub van den Bogaard , Giulia De Felice , Daniël Emmery , Fausto Gallucci , Sirui Li
{"title":"Numbering up and sizing up gliding arc reactors to enhance the plasma-based synthesis of NOx†","authors":"Thijs van Raak , Huub van den Bogaard , Giulia De Felice , Daniël Emmery , Fausto Gallucci , Sirui Li","doi":"10.1039/d4cy00655k","DOIUrl":"10.1039/d4cy00655k","url":null,"abstract":"<div><div>Non-thermal plasma-based NO<sub>x</sub> synthesis from ambient air is receiving an increasing amount of interest for its potential in small-scale, sustainable fertilizer production. Nevertheless, most reported research focuses on lab-scale systems and a single reactor with limited production. In this work, two gliding arc reactors (GARs) with 2 mm discharge gaps were connected in series or in parallel to explore strategies for scaling up the productivity. A single GAR with an enlarged discharge gap of 4 mm was also investigated for comparison. Operation parameters such as flow rate, discharge power & mode, and effective residence time were tested. The NO<sub>x</sub> concentration increased for all configurations with an increase in specific energy input (SEI), and effective residence time. The case of reactors connected in series outperformed all other configurations. The energy consumptions and NO<sub>x</sub> productions achieved were 2.29–2.42 MJ mol<sub>N</sub><sup>−1</sup> and 124.6–158.3 mmol<sub>N</sub> h<sup>−1</sup>, respectively. The NO<sub>2</sub> selectivity could be enhanced by prolonging the post-plasma oxidation time while consuming the excess O<sub>2</sub> in the feed and utilizing the low temperatures at the reactor(s) outlet. By using this connection strategy, NO<sub>x</sub> production can be doubled with a 20.9% improvement in energy consumption compared to a single reactor.</div></div>","PeriodicalId":66,"journal":{"name":"Catalysis Science & Technology","volume":"14 18","pages":"Pages 5405-5421"},"PeriodicalIF":4.4,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/cy/d4cy00655k?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141936835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lu Liu , Mingzhu Yue , Bingkun Li , Wenfu Xie , Nana Peng , Qiang Wang
{"title":"Beyond catalysts: enhancing electrocatalytic CO2 reduction through diverse strategies","authors":"Lu Liu , Mingzhu Yue , Bingkun Li , Wenfu Xie , Nana Peng , Qiang Wang","doi":"10.1039/d4cy00767k","DOIUrl":"10.1039/d4cy00767k","url":null,"abstract":"<div><div>Electrocatalytic CO<sub>2</sub> reduction carries extraordinary significance for curbing CO<sub>2</sub> emissions while generating value-added chemicals with economic and environmental benefits. Despite significant progress in catalyst design and the regulation of intrinsic activity, there still exist huge challenges in the industrial application of CO<sub>2</sub> reduction. In addition to catalysts, the regulation and optimization of electrodes, electrolytes, reactors, and external fields for CO<sub>2</sub> reduction can also enhance performance, providing a feasible strategy for the industrial application of CO<sub>2</sub> reduction. With this background, we present the recent progress on improving the performance of electrocatalytic CO<sub>2</sub> reduction beyond catalysts, providing useful guidance and discussion on the intrinsic structure–activity relationships and reaction mechanisms, and existing challenges and prospects for electrocatalytic CO<sub>2</sub> reduction in both fundamental research and application fields. We hope that this review can stimulate more insights and inspiration toward the development of CO<sub>2</sub> reduction technology.</div></div>","PeriodicalId":66,"journal":{"name":"Catalysis Science & Technology","volume":"14 18","pages":"Pages 5176-5198"},"PeriodicalIF":4.4,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141936836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yulu Chen , Hongyan Pan , Chunliang Yang , Haipeng Xiao , Zheng Chen , Chun Zhu , Weiyue Zhao , Qian Lin
{"title":"Facile synthesis and electronic structure optimization of sub-nanometer palladium clusters for efficient direct synthesis of H2O2†","authors":"Yulu Chen , Hongyan Pan , Chunliang Yang , Haipeng Xiao , Zheng Chen , Chun Zhu , Weiyue Zhao , Qian Lin","doi":"10.1039/d4cy00567h","DOIUrl":"10.1039/d4cy00567h","url":null,"abstract":"<div><div>Direct synthesis of hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) from hydrogen and oxygen is an atom-efficient and environmentally benign method. However, achieving high H<sub>2</sub>O<sub>2</sub> selectivity and productivity with sub-nanometer Pd clusters remains challenging due to the tendency of undercoordinated surface sites to cleave O–O bonds and form water. Herein, sub-nanometer Pd clusters are confined to ammonia-treated ZIF-8-derived mesoporous carbon (ZDC) with controlled nitrogen configurations, which facilitates the effective direct synthesis of H<sub>2</sub>O<sub>2</sub> by optimizing the electronic structure of Pd atoms <em>via</em> a strong metal–support interaction (SMSI). The sub-nanometer catalyst Pd/ZDC<sub>1.0</sub> achieves a remarkable H<sub>2</sub>O<sub>2</sub> selectivity of 81.6% and productivity of 3323 mmol g<sub>Pd</sub><sup>−1</sup> h<sup>−1</sup>, which are 12.5% and 122.8% higher than those of the sub-nanometer catalyst Pd/XC-72 without nitrogen doping, respectively. Structural characterization shows that the pore structure and pyridine nitrogen content of Pd/ZDC<sub>X</sub> are proportional to the ammonia treatment time. Theoretical calculations demonstrate that there is a strong electron transfer between sub-nanometer Pd clusters and pyridine nitrogen sites, leading to a downward shift in the d-band center of Pd atoms. The electronic effect weakens the adsorption of reactive intermediates on undercoordinated surface sites and suppresses O–O bond dissociation, contributing to enhanced selectivity and preventing water formation.</div></div>","PeriodicalId":66,"journal":{"name":"Catalysis Science & Technology","volume":"14 18","pages":"Pages 5385-5393"},"PeriodicalIF":4.4,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141936839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chao Deng , Xu Wang , Xixi Chen , Ruxing Gao , Leiyu Zhang , Chundong Zhang , Ki-Won Jun , Seok Ki Kim , Hui Wan , Guofeng Guan
{"title":"ZIF-8 pyrolized N-doped carbon-supported iron catalysts for enhanced CO2 hydrogenation activity to valuable hydrocarbons†","authors":"Chao Deng , Xu Wang , Xixi Chen , Ruxing Gao , Leiyu Zhang , Chundong Zhang , Ki-Won Jun , Seok Ki Kim , Hui Wan , Guofeng Guan","doi":"10.1039/d4cy00810c","DOIUrl":"10.1039/d4cy00810c","url":null,"abstract":"<div><div>N-doped carbon (NC) material-supported Fe catalysts have been widely used in CO<sub>2</sub> hydrogenation reactions; however, the interaction between iron active sites and NC supports is still unclear. Herein, we synthesized a series of ZIF-8-derived N-doped carbon-supported iron catalysts <em>via</em> varied pyrolysis temperatures (Fe/NC-<em>T</em>, <em>T</em> = 950, 1050 and 1150 °C), preserving different amounts of N-type and C-type and tunable surface N-content. N-doping increases the adsorption of CO<sub>2</sub> and the electron density around the active phase Fe, thereby enhancing the dissociation of CO<sub>2</sub> during the reaction and the subsequent conversion of the CO intermediate to the hydrocarbon product. Besides, the balance of surface N-containing pyrrolic and graphitized carbon-mediated electron transfer on the catalyst surface was responsible for the enhanced catalytic performances. XPS, Raman spectroscopy, and TPD techniques were used to verify these alterations. The findings of this study provide insights and guidance for optimizing the catalytic performance of N-doped carbon-supported Fe catalysts in CO<sub>2</sub> hydrogenation reactions.</div></div>","PeriodicalId":66,"journal":{"name":"Catalysis Science & Technology","volume":"14 18","pages":"Pages 5304-5313"},"PeriodicalIF":4.4,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141872286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Longyang Zhou , Chuanhuang Wu , Daying Guo , Yuchuang Zhu , Cong Wang , Xi'an Chen , Shun Wang
{"title":"Highly efficient catalytic conversion of polysulfides: iron-based oxides","authors":"Longyang Zhou , Chuanhuang Wu , Daying Guo , Yuchuang Zhu , Cong Wang , Xi'an Chen , Shun Wang","doi":"10.1039/d4cy00594e","DOIUrl":"10.1039/d4cy00594e","url":null,"abstract":"<div><div>Amidst the rapid expansion of the new energy sector, lithium–sulfur (Li–S) batteries have garnered significant interest due to their high energy density and eco-friendliness. However, challenges such as the shuttle effect have hindered Li–S batteries from realizing their full potential. To address the shuttle effect and its associated issues, researchers have embarked on material studies using various approaches. This review presents recent progress in the study of catalysts based on iron-containing oxides, highlighting key advancements in the field. Initially, it elucidates the catalytic mechanisms of iron-based oxides, encompassing physical confinement, chemical adsorption, and catalysis. Subsequently, it delves into the meticulous design and optimization of catalysts employing five strategies: structural engineering, oxygen vacancy manipulation, heterostructure formation, heteroatom doping, and energy band engineering. Lastly, it offers a concise summary and future outlook on iron-based oxide catalysts.</div></div>","PeriodicalId":66,"journal":{"name":"Catalysis Science & Technology","volume":"14 18","pages":"Pages 5161-5175"},"PeriodicalIF":4.4,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141872293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Andjelika Bjelajac , Rada Petrovic , Milica Stefanovic , Adrian-Marie Phillipe , Yves Fleming , Jérôme Guillot , Jean-Baptiste Chemin , Patrick Choquet , Joris Kadok , Simon Bulou
{"title":"Au nanoparticle decoration of nanoparticular and nanotubular TiO2 using atmospheric pressure cold plasma for photocatalytic applications†","authors":"Andjelika Bjelajac , Rada Petrovic , Milica Stefanovic , Adrian-Marie Phillipe , Yves Fleming , Jérôme Guillot , Jean-Baptiste Chemin , Patrick Choquet , Joris Kadok , Simon Bulou","doi":"10.1039/d4cy00345d","DOIUrl":"10.1039/d4cy00345d","url":null,"abstract":"<div><div>Herein, we present the effectiveness of using an atmospheric pressure dielectric barrier discharge (DBD) plasma torch for gold (Au) nanoparticle (NP) decoration of TiO<sub>2</sub> nanoparticles and nanotubes (NTs). Au NPs were synthesised using an aerosol of HAuCl<sub>4</sub>·3H<sub>2</sub>O solution that was carried with an inert gas to the near plasma post-discharge zone. Careful optimisation of the deposition parameters was done to ensure the uniform and dispersed decoration of TiO<sub>2</sub>, demonstrated by scanning and transmission electron microscopy with energy dispersive spectroscopy. The X-ray diffraction was used to confirm that the deposit was pure metallic Au. Unlike the bare TiO<sub>2</sub> nanoparticles, the samples with Au NPs showed the plasmon resonance peak in the region of 500–600 nm. The photocatalytic property enhancement of Au NP decorated TiO<sub>2</sub> structures was demonstrated: The TiO<sub>2</sub> NPs@Au nanoparticular powder showed improved photocatalytic activity by enabling methyl orange dye degradation 35% faster than that of the pristine TiO<sub>2</sub> NPs; superior photocatalytic behaviour of TiO<sub>2</sub> NTs@Au thin films compared to bare TiO<sub>2</sub> NTs was observed in the photodegradation of stearic acid.</div></div>","PeriodicalId":66,"journal":{"name":"Catalysis Science & Technology","volume":"14 18","pages":"Pages 5342-5351"},"PeriodicalIF":4.4,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/cy/d4cy00345d?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141880532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}