2019 19th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS)最新文献

筛选
英文 中文
Lab-on-chip platform as a nanosatellite payload solution for biomedical experiments in outer space 芯片实验室平台作为外层空间生物医学实验的纳米卫星有效载荷解决方案
A. Podwin, A. Graja, Dawid Przystupski, D. Lizanets, P. Śniadek, R. Walczak, J. Dziuban
{"title":"Lab-on-chip platform as a nanosatellite payload solution for biomedical experiments in outer space","authors":"A. Podwin, A. Graja, Dawid Przystupski, D. Lizanets, P. Śniadek, R. Walczak, J. Dziuban","doi":"10.1109/PowerMEMS49317.2019.82063206124","DOIUrl":"https://doi.org/10.1109/PowerMEMS49317.2019.82063206124","url":null,"abstract":"Growing interest in outer space exploration with the use of small scale (1-10 kg), so called, CubeSat nanosatellites can be recently observed. Special attention is paid here mainly to the investigation of widely understandable life development in diverse and harsh space environments [1] –[3]. Application of a miniature lab-on-chip (LOC) instrumentation in this regard appears to be reasonable solution to conduct different and relatively inexpensive biomedical tests in microgravity. As a response, this work presents a multi-functional and full-featured LOC platform ready for the integration with the dedicated nanosatellite system.","PeriodicalId":6648,"journal":{"name":"2019 19th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS)","volume":"22 1","pages":"1-3"},"PeriodicalIF":0.0,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77636332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
The Centrifugal Softening Effect of an Inverse Nonlinear Energy Harvester in Low-frequency Rotational Motion for Enhancing Performance 逆非线性能量采集器在低频旋转运动中的离心软化效应
Xutao Mei, Shengxi Zhou, Bo Yang, T. Kaizuka, Kimihiko Nakano
{"title":"The Centrifugal Softening Effect of an Inverse Nonlinear Energy Harvester in Low-frequency Rotational Motion for Enhancing Performance","authors":"Xutao Mei, Shengxi Zhou, Bo Yang, T. Kaizuka, Kimihiko Nakano","doi":"10.1109/PowerMEMS49317.2019.41031604008","DOIUrl":"https://doi.org/10.1109/PowerMEMS49317.2019.41031604008","url":null,"abstract":"Recently, various nonlinear energy harvesters, which is aimed to provide the power supply for wireless sensors, are designed to harvest rotational energy. However, there are few studies for energy harvesting from rotational motion when the rotational speed is less than 120 rpm (2 Hz). In this paper, an inverse nonlinear piezoelectric energy harvester (PEH) is proposed for enhancing performance in low-frequency rotational motion via the centrifugal softening effect. In addition, according to Lagrange equation, the related theoretical model is derived. Furthermore, the experiments between the forward and inverse configurations in rotational motion are conducted under the rotational speeds ranging from 60 rpm to 160 rpm. The experimental results demonstrate that in low-frequency rotational motion the inverse PEH exhibits outstanding performance with the RMS voltage as high as 5 V, which is enough for powering some wireless sensors. Overall, the centrifugal softening effect is verified to be an effect method for energy harvesting in low-frequency rotational motion.","PeriodicalId":6648,"journal":{"name":"2019 19th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS)","volume":"18 1","pages":"1-8"},"PeriodicalIF":0.0,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87426930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Energy Harvesting from Kinetics of Prosthetic Leg 从假肢动力学中获取能量
J. Pu, Y. Shi, Y. Jia
{"title":"Energy Harvesting from Kinetics of Prosthetic Leg","authors":"J. Pu, Y. Shi, Y. Jia","doi":"10.1109/PowerMEMS49317.2019.20515807357","DOIUrl":"https://doi.org/10.1109/PowerMEMS49317.2019.20515807357","url":null,"abstract":"A prosthetic applying energy harvesting system will benefit from economizing the space to be evacuated for bulky battery instead of smart and portable in situ rechargeable batteries. In addition, fibre reinforced composites for main-body material also take advantages of its strong and lightweight properties for portable usage. This paper demonstrates manufacturing of a smart composite prosthetic leg with energy harvesting capabilities and to investigate the power recovering performance of the carbon-fibre prosthetic. Tests of energy harvesting was based on a vibration shaker where a prosthetic mount by macro fibre composite (MFC) was attached on. Acceleration data collected in terms of running, walking, climbing and walking with weight in hand are utilized to stimulate MFC generating electric power. The results find that running gait recovered the most average power from 420 mW.","PeriodicalId":6648,"journal":{"name":"2019 19th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS)","volume":"28 1","pages":"1-6"},"PeriodicalIF":0.0,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87812688","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impedance-based finite element modelling of a highly-coupled and pre-stressed piezoelectric energy harvester 基于阻抗的高耦合预应力压电能量采集器有限元建模
Yang Kuang, M. Zhu
{"title":"Impedance-based finite element modelling of a highly-coupled and pre-stressed piezoelectric energy harvester","authors":"Yang Kuang, M. Zhu","doi":"10.1109/PowerMEMS49317.2019.51289503684","DOIUrl":"https://doi.org/10.1109/PowerMEMS49317.2019.51289503684","url":null,"abstract":"This work presents an experimentally validated impedance-based finite element model (FEM) of a highly-coupled pre-stressed piezoelectric energy harvester (PEH) with piezoelectric multilayer stacks (PMSs). The FEM first simulates the status of the PEH as a result of the static pre-stress. It then analyses the internal impedance$|Z_{in}|$ of the pre-stressed PEH, which is used as the optimal load resistance Ropt for power output generation. The developed FEM is able to precisely predict (1) the maximum power output at each frequency without the tedious load-resistance sweeping approach traditionally used; (2) the dual-power-peaks phenomenon of highly-coupled PEHs, which cannot be observed when using the traditional approach of $R_{opt}=1/omega C_{P}$. This model provides a useful tool for the design and optimization highly-coupled piezoelectric energy harvesters.","PeriodicalId":6648,"journal":{"name":"2019 19th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS)","volume":"32 1","pages":"1-5"},"PeriodicalIF":0.0,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88279323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Self-Powered Vibration Analyser 自供电振动分析仪
Miklós Szappanos, János Radó, P. Harmat, J. Volk
{"title":"Self-Powered Vibration Analyser","authors":"Miklós Szappanos, János Radó, P. Harmat, J. Volk","doi":"10.1109/powermems49317.2019.61547410899","DOIUrl":"https://doi.org/10.1109/powermems49317.2019.61547410899","url":null,"abstract":"In this work we present a wireless, energy harvesting powered solution for vibration analysis. In order to ensure minimal power consumption the system is equipped with our own radiofrequency protocol, which is tailored for the needs of energy harvesting.Our system has a small form factor, all the while containing everything needed for a wireless energy harvesting sensor unit. It has two switchable MEMS accelerometers to ensure minimal power consumption and to maintain wide frequency range if needed. The on-board processing unit with floating point hardware accelerator makes Fourier transformation, thus vibration spectrum analysation efficient. The energy management unit is designed with dual topology, making it able to accept both low and high impedance energy harvesters at the same time (hybrid harvesting). The radiofrequency module may work with our own radio frequency protocol or with the Bluetooth standard (Bluetooth 5, BLE with long range PHY).","PeriodicalId":6648,"journal":{"name":"2019 19th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS)","volume":"74 1","pages":"1-3"},"PeriodicalIF":0.0,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88968034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CuAg electrode for creatinine microfluidic fuel cell based self-powered electrochemical sensor. CuAg电极用于肌酐微流体燃料电池自供电电化学传感器。
M. García-Barajas, A. M. Trejo-Dominguez, J. Ledesma-García, L. Arriaga, L. Á. Contreras, J. Galindo-de-la-Rosa, N. Arjona, M. Guerra‒Balcázar
{"title":"CuAg electrode for creatinine microfluidic fuel cell based self-powered electrochemical sensor.","authors":"M. García-Barajas, A. M. Trejo-Dominguez, J. Ledesma-García, L. Arriaga, L. Á. Contreras, J. Galindo-de-la-Rosa, N. Arjona, M. Guerra‒Balcázar","doi":"10.1109/PowerMEMS49317.2019.61547401764","DOIUrl":"https://doi.org/10.1109/PowerMEMS49317.2019.61547401764","url":null,"abstract":"Fuel cell-based self-powered electrochemical sensors have attracted considerable attention because contrary to conventional electrochemical sensors, they do not need external power supplies and complex devices due to they operate through the use of electrical output as sensing signal provided by redox reactions in fuel cells. Creatinine has been considered as an indicator of renal function specifically after dialysis, thyroid malfunction and muscle damage. The development of a suitable catalytic material for creatinine sensing able to generate electrical energy from its oxidation is still a challenge. Creatinine can form complexes with different transition metals due to the number of binding sites that coordinate with the metal donor groups such as copper. However, Cu suffers fast oxidation under environmental conditions and thus, the development of Cu alloys is needed. In this work, we developed an electrode with a catalytic ink containing a CuAg bimetallic material as an electrocatalyst for creatinine oxidation. The electrode was evaluated in a fuel cell and creatinine sensing.","PeriodicalId":6648,"journal":{"name":"2019 19th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS)","volume":"116 1","pages":"1-6"},"PeriodicalIF":0.0,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77977608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Complex methodology for studying the emission properties of multi-tip field cathodes with online data processing 用在线数据处理研究多尖端场阴极发射特性的复杂方法
E. O. Popov, S. Filippov, A. G. Kolosko
{"title":"Complex methodology for studying the emission properties of multi-tip field cathodes with online data processing","authors":"E. O. Popov, S. Filippov, A. G. Kolosko","doi":"10.1109/PowerMEMS49317.2019.20515807866","DOIUrl":"https://doi.org/10.1109/PowerMEMS49317.2019.20515807866","url":null,"abstract":"The paper presents a description of a comprehensive technique developed for a multilateral study of the properties of large area field emitters (LAFEs). The main advantages of the technique are the use of various high voltage power supply modes and online analysis of the recorded signals. The technique includes not only the registration of standard emission parameters, but also the analysis of related phenomena -luminescence patterns and mass spectrometric data. In addition, the methodology includes checking the correspondence of the cathode operation mode to classical cold field emission, based on the latest theoretical developments, and computer simulation using COMSOL and LabVIEW packages.","PeriodicalId":6648,"journal":{"name":"2019 19th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS)","volume":"25 1","pages":"1-3"},"PeriodicalIF":0.0,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83200270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization of Aluminum Nitride (AlN) Photonic Modulator as Function of High Voltage from Textile Triboelectric Nanogenerator (TENG) 纺织摩擦纳米发电机(TENG)高压作用下氮化铝(AlN)光子调制器的表征
B. Dong, Qiongfeng Shi, Tianyiyi He, Chengkuo Lee
{"title":"Characterization of Aluminum Nitride (AlN) Photonic Modulator as Function of High Voltage from Textile Triboelectric Nanogenerator (TENG)","authors":"B. Dong, Qiongfeng Shi, Tianyiyi He, Chengkuo Lee","doi":"10.1109/PowerMEMS49317.2019.51289503157","DOIUrl":"https://doi.org/10.1109/PowerMEMS49317.2019.51289503157","url":null,"abstract":"We study the feasibility of actively and efficiently tuning an aluminum nitride (AlN) photonic modulator using a triboelectric nanogenerator (TENG). By utilizing the Pockels effect in AlN, AlN microring resonator (MRR) modulator can be tuned by the external E-field penetrating through it. The high open-circuit voltage provided by the TENG has synergy with the capacitor nature of AlN MRR modulators. The high voltage can be applied to the AlN modulator with negligible degradation. We demonstrate dynamic modulation of AlN modulator using a textile TENG. The AlN modulator has high fabrication variation tolerance. The hybrid integrated system is not affected by the hand tapping speed on TENG. Dynamic optical switching is realized which is further utilized to demonstrate the optical Morse code transmission. This hybrid integration is a crucial demonstration toward future self-sustainable wearable photonic IC, which will find significant applications in Internet of Things (IoT) and human-machine interface (HMI).","PeriodicalId":6648,"journal":{"name":"2019 19th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS)","volume":"22 1","pages":"1-4"},"PeriodicalIF":0.0,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85281704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
An EPM-based Variable Stiffness Oscillator for Vibration Energy Harvesting 一种基于epm的变刚度振动能量收集振荡器
T. Kosaka, A. Masuda
{"title":"An EPM-based Variable Stiffness Oscillator for Vibration Energy Harvesting","authors":"T. Kosaka, A. Masuda","doi":"10.1109/PowerMEMS49317.2019.82063210089","DOIUrl":"https://doi.org/10.1109/PowerMEMS49317.2019.82063210089","url":null,"abstract":"AbstractThis study presents a novel variable stiffness oscillator for vibration energy harvesting with resonant frequency tunability. Methods of tuning frequency include changing dimensions, moving center of gravity of the proofmass, and adding positive or negative stiffness in electrostatic ways, piezoelectric ways, or magnetic ways. In this study, an EPM-based variable stiffness mechanism for a vibration energy harvester was proposed and applied to a cantilever oscillator to examine its basic performance. It was described that the holding force of the EPM significantly depended on the activation process, and it was important to realize the full activation to exploit the potential performance of the EPM. Then, it was shown that the resonance frequency of the cantilever oscillator can be changed from 26Hz to 42 Hz when the EPM placed in the middle of the beam was fully activated, while the partially activated EPM could not maintain the resonance because of its weak holding force.","PeriodicalId":6648,"journal":{"name":"2019 19th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS)","volume":"6 1","pages":"1-8"},"PeriodicalIF":0.0,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85378378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A minimal volume hermetic packaging design for high energy density micro energy systems 一种用于高能量密度微能量系统的最小体积密封包装设计
X. Yue, Jessica Grzyb, Akaash Padmanabha, J. Pikul
{"title":"A minimal volume hermetic packaging design for high energy density micro energy systems","authors":"X. Yue, Jessica Grzyb, Akaash Padmanabha, J. Pikul","doi":"10.1109/powermems49317.2019.30773702286","DOIUrl":"https://doi.org/10.1109/powermems49317.2019.30773702286","url":null,"abstract":"We demonstrate a hermetic packaging strategy for micro energy storage systems that minimizes the packaging volume and increases the active energy storage materials by 2X and 5X compared to the best lab scale microbatteries and commercial pouch cells. The minimal packaging design uses the current collectors as a multifunctional hermetic shell and laser-machined hot melt tape to provide a thin, robust hermetic sealing between current collectors with stronger adhesion to metals than most commercial adhesives. We developed the packaging using commercially available equipment and materials, and created a strategy that can be applied to many kinds of micro energy systems with custom shape configurations. This minimal, versatile packaging has the potential to improve the energy density of current micro energy storage systems for applications ranging from biomedical devices to micro-robots.","PeriodicalId":6648,"journal":{"name":"2019 19th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS)","volume":"10 1","pages":"1-4"},"PeriodicalIF":0.0,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88695036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信