{"title":"纺织摩擦纳米发电机(TENG)高压作用下氮化铝(AlN)光子调制器的表征","authors":"B. Dong, Qiongfeng Shi, Tianyiyi He, Chengkuo Lee","doi":"10.1109/PowerMEMS49317.2019.51289503157","DOIUrl":null,"url":null,"abstract":"We study the feasibility of actively and efficiently tuning an aluminum nitride (AlN) photonic modulator using a triboelectric nanogenerator (TENG). By utilizing the Pockels effect in AlN, AlN microring resonator (MRR) modulator can be tuned by the external E-field penetrating through it. The high open-circuit voltage provided by the TENG has synergy with the capacitor nature of AlN MRR modulators. The high voltage can be applied to the AlN modulator with negligible degradation. We demonstrate dynamic modulation of AlN modulator using a textile TENG. The AlN modulator has high fabrication variation tolerance. The hybrid integrated system is not affected by the hand tapping speed on TENG. Dynamic optical switching is realized which is further utilized to demonstrate the optical Morse code transmission. This hybrid integration is a crucial demonstration toward future self-sustainable wearable photonic IC, which will find significant applications in Internet of Things (IoT) and human-machine interface (HMI).","PeriodicalId":6648,"journal":{"name":"2019 19th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS)","volume":"22 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Characterization of Aluminum Nitride (AlN) Photonic Modulator as Function of High Voltage from Textile Triboelectric Nanogenerator (TENG)\",\"authors\":\"B. Dong, Qiongfeng Shi, Tianyiyi He, Chengkuo Lee\",\"doi\":\"10.1109/PowerMEMS49317.2019.51289503157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the feasibility of actively and efficiently tuning an aluminum nitride (AlN) photonic modulator using a triboelectric nanogenerator (TENG). By utilizing the Pockels effect in AlN, AlN microring resonator (MRR) modulator can be tuned by the external E-field penetrating through it. The high open-circuit voltage provided by the TENG has synergy with the capacitor nature of AlN MRR modulators. The high voltage can be applied to the AlN modulator with negligible degradation. We demonstrate dynamic modulation of AlN modulator using a textile TENG. The AlN modulator has high fabrication variation tolerance. The hybrid integrated system is not affected by the hand tapping speed on TENG. Dynamic optical switching is realized which is further utilized to demonstrate the optical Morse code transmission. This hybrid integration is a crucial demonstration toward future self-sustainable wearable photonic IC, which will find significant applications in Internet of Things (IoT) and human-machine interface (HMI).\",\"PeriodicalId\":6648,\"journal\":{\"name\":\"2019 19th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS)\",\"volume\":\"22 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 19th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PowerMEMS49317.2019.51289503157\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 19th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PowerMEMS49317.2019.51289503157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Characterization of Aluminum Nitride (AlN) Photonic Modulator as Function of High Voltage from Textile Triboelectric Nanogenerator (TENG)
We study the feasibility of actively and efficiently tuning an aluminum nitride (AlN) photonic modulator using a triboelectric nanogenerator (TENG). By utilizing the Pockels effect in AlN, AlN microring resonator (MRR) modulator can be tuned by the external E-field penetrating through it. The high open-circuit voltage provided by the TENG has synergy with the capacitor nature of AlN MRR modulators. The high voltage can be applied to the AlN modulator with negligible degradation. We demonstrate dynamic modulation of AlN modulator using a textile TENG. The AlN modulator has high fabrication variation tolerance. The hybrid integrated system is not affected by the hand tapping speed on TENG. Dynamic optical switching is realized which is further utilized to demonstrate the optical Morse code transmission. This hybrid integration is a crucial demonstration toward future self-sustainable wearable photonic IC, which will find significant applications in Internet of Things (IoT) and human-machine interface (HMI).