{"title":"A reconfigurable 28/37GHz hybrid-beamforming MIMO receiver with inter-band carrier aggregation and RF-domain LMS weight adaptation","authors":"Susnata Mondal, Rahul Singh, J. Paramesh","doi":"10.1109/ISSCC.2018.8310189","DOIUrl":"https://doi.org/10.1109/ISSCC.2018.8310189","url":null,"abstract":"This paper presents a hybrid beamforming mm-wave MIMO receiver with two key innovations. First, it can be configured into three modes: two single-band multistream modes at 28 or 37 GHz that can support single-or multi-user MIMO, and a concurrent 28 and 37GHz dual-band single-stream phased-array inter-band carrier-aggregation mode. In all modes, the receiver features full connectivity from each antenna element input to each output stream, thereby maximizing usage of the available aperture. Second, the digitally programmable RF beamforming weights can be controlled by an external serial interface, or by an on-chip “one-port” mixed-signal adaptation loop that implements a technique that we call double-sampling time-multiplexed LMS (DS-TM-LMS). Unlike conventional LMS-type adaptation algorithms that require access to the individual array inputs and the combined output, and are therefore not easily amenable to a hybrid beamformer, DS-TM-LMS updates the RF-domain weights by accessing only the combined downconverted array outputs. Such adaptation is valuable for adaptive main-lobe, side-lobe or null steering, but more importantly, it can assist/augment codebook-based beam acquisition/tracking algorithms, which may fail in the presence of multipath, on- or off-channel interferers.","PeriodicalId":6617,"journal":{"name":"2018 IEEE International Solid - State Circuits Conference - (ISSCC)","volume":"46 1","pages":"72-74"},"PeriodicalIF":0.0,"publicationDate":"2018-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80348719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Y. Thonnart, M. Zid, J. L. Jiménez, G. Waltener, R. Polster, O. Dubray, F. Lepin, S. Bernabé, S. Menezo, G. Pares, O. Castany, L. Boutafa, P. Grosse, B. Charbonnier, C. Baudot
{"title":"A 10Gb/s Si-photonic transceiver with 150μW 120μs-lock-time digitally supervised analog microring wavelength stabilization for 1Tb/s/mm2 Die-to-Die Optical Networks","authors":"Y. Thonnart, M. Zid, J. L. Jiménez, G. Waltener, R. Polster, O. Dubray, F. Lepin, S. Bernabé, S. Menezo, G. Pares, O. Castany, L. Boutafa, P. Grosse, B. Charbonnier, C. Baudot","doi":"10.1109/ISSCC.2018.8310328","DOIUrl":"https://doi.org/10.1109/ISSCC.2018.8310328","url":null,"abstract":"Silicon photonics has allowed cost reduction and performance improvement for optical interconnects for the past few years, and short-reach wavelength-division-multiplexed (WDM) links have recently emerged thanks to the introduction of microring modulators and filters [1-5]. Nevertheless, the promise of optical networks-on-chip foreseen in [1] has to face the integration challenges of scalable low-footprint elementary drivers and robust operation under heavy thermal stress due to self-heating of the cores with varying loads. This work presents a 3D-stacked CMOS-on-Si-photonic transceiver chip, which includes base building-blocks targeting die-to-die WDM optical communication for multicore processors: 10Gbps 2.5Vpp OOK modulator driver, associated receiver, and digitally-supervised analog wavelength stabilization using microring heaters and remapping for 0-to-90°C operating range, for a total footprint of 0.01mm2 per microring.","PeriodicalId":6617,"journal":{"name":"2018 IEEE International Solid - State Circuits Conference - (ISSCC)","volume":"130 1","pages":"350-352"},"PeriodicalIF":0.0,"publicationDate":"2018-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75588071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shuhei Maeda, S. Ohshita, K. Furutani, Y. Yakubo, T. Ishizu, T. Atsumi, Y. Ando, D. Matsubayashi, K. Kato, T. Okuda, M. Fujita, S. Yamazaki
{"title":"A 20ns-write 45ns-read and 1014-cycle endurance memory module composed of 60nm crystalline oxide semiconductor transistors","authors":"Shuhei Maeda, S. Ohshita, K. Furutani, Y. Yakubo, T. Ishizu, T. Atsumi, Y. Ando, D. Matsubayashi, K. Kato, T. Okuda, M. Fujita, S. Yamazaki","doi":"10.1109/ISSCC.2018.8310395","DOIUrl":"https://doi.org/10.1109/ISSCC.2018.8310395","url":null,"abstract":"Development of LSI targeting artificial intelligence (AI) has accelerated, some chips have been used and are commercially available in a number of applications. LSI capable of performing arithmetic operation for deep learning, etc., at low power and high speed is crucial for achieving more sophisticated AI. Power consumption is increasing significantly owing particularly to the practical use of AI, and power reduction techniques are urgently necessary.","PeriodicalId":6617,"journal":{"name":"2018 IEEE International Solid - State Circuits Conference - (ISSCC)","volume":"9 1","pages":"484-486"},"PeriodicalIF":0.0,"publicationDate":"2018-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91542907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yitae Kim, Wonchul Choi, D. Park, H. Jeoung, Bumsuk Kim, Youngsun Oh, Sung-Hun Oh, Byungjun Park, Euiyeol Kim, Yunki Lee, T. Jung, Yongwoong Kim, Sukki Yoon, Seokyong Hong, Jesuk Lee, Sangil Jung, Changrok Moon, Yongin Park, Duckhyung Lee, Duckhyun Chang
{"title":"A 1/2.8-inch 24Mpixel CMOS image sensor with 0.9μm unit pixels separated by full-depth deep-trench isolation","authors":"Yitae Kim, Wonchul Choi, D. Park, H. Jeoung, Bumsuk Kim, Youngsun Oh, Sung-Hun Oh, Byungjun Park, Euiyeol Kim, Yunki Lee, T. Jung, Yongwoong Kim, Sukki Yoon, Seokyong Hong, Jesuk Lee, Sangil Jung, Changrok Moon, Yongin Park, Duckhyung Lee, Duckhyun Chang","doi":"10.1109/ISSCC.2018.8310195","DOIUrl":"https://doi.org/10.1109/ISSCC.2018.8310195","url":null,"abstract":"CMOS image sensors (CIS) have attracted much attention for the emerging mobile market, and the demand of high-resolution image sensors in mobile applications continues to increase [1-3]. For this reason, pixel pitch has been reduced down to 1.0μσι for mass production. Nevertheless, CISs are continuously scaling down to meet the strong demand for higher-resolution images. However, when the pixel size is reduced down to the sub-micron regime (possibly smaller than the diffraction limit), it is very important to consider photo sensitivity and crosstalk, which determine signal-to-noise ratio (SNR). To minimize degradation of photo sensitivity, back-side illumination (BSI), which collects light at the back side, is widely used instead of front-side illumination. In addition to BSI technology, deep-trench isolation (DTI) has emerged as a leading candidate to suppress crosstalk since it physically isolates the pixel. Previous work shows that partial-depth DTI can be applied in a 1.12μm-pitch pixel [4]. Furthermore, full-depth DTI has been demonstrated in a 1.12μm pixel with 24% larger full-well capacity (FWC), 30% smaller YSNR10, 2.0dB higher SNR, and especially for lower crosstalk (12.5%) compared with a conventional one [5]. In this work, a 24-Mpixel CIS with 0.9μσι unit pixels that takes advantage of full-depth DTI is demonstrated.","PeriodicalId":6617,"journal":{"name":"2018 IEEE International Solid - State Circuits Conference - (ISSCC)","volume":"7 1","pages":"84-86"},"PeriodicalIF":0.0,"publicationDate":"2018-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76987117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A high-efficiency 28GHz outphasing PA with 23dBm output power using a triaxial balun combiner","authors":"Bagher Rabet, J. Buckwalter","doi":"10.1109/ISSCC.2018.8310240","DOIUrl":"https://doi.org/10.1109/ISSCC.2018.8310240","url":null,"abstract":"Gigabit-per-second millimeter-wave (mm-wave) access and backhaul networks at 28GHz demand high-order QAM, OFDM, and/or carrier-aggregated waveforms that force the PA to operate under high peak-to-average power ratio (PAPR) [1]. High PAPR requirements aggravate the design of mm-wave Si CMOS and SiGe BiCMOS PAs since a linear response and high efficiency are simultaneously desired. Recent work has demonstrated mm-wave PAs with peak efficiency exceeding 30% at 28GHz for output powers above 20dBm [1-5]. However, high average efficiency associated with high-PAPR waveforms remains elusive. To improve average efficiency, circuit techniques based on Doherty [3] and outphasing [6] have been demonstrated in mm-wave bands. Earlier work using these techniques showed average efficiency with QAM waveforms that is well under 20%.","PeriodicalId":6617,"journal":{"name":"2018 IEEE International Solid - State Circuits Conference - (ISSCC)","volume":"29 1","pages":"174-176"},"PeriodicalIF":0.0,"publicationDate":"2018-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85241711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Luke Wang, Yingying Fu, Marc-Andre LaCroix, Euhan Chong, A. C. Carusone
{"title":"A 64Gb/s PAM-4 transceiver utilizing an adaptive threshold ADC in 16nm FinFET","authors":"Luke Wang, Yingying Fu, Marc-Andre LaCroix, Euhan Chong, A. C. Carusone","doi":"10.1109/ISSCC.2018.8310208","DOIUrl":"https://doi.org/10.1109/ISSCC.2018.8310208","url":null,"abstract":"ADC-based transceivers having up to 8 bits of resolution have been reported for PAM-4 links above 50Gb/s [1,2], although fewer bits are sufficient and offer lower power for short reach (SR) channels. To further reduce the power consumption of ADC-based wireline transceivers, non-uniform quantization has been explored [3,4] using performance metrics for the complete link, such as bit-error rate (BER), to optimize the quantizer thresholds. Both [3,4] are PAM-2 (NRZ) receivers, demonstrating non-uniform quantization specifically for a decision feedback equalizer (DFE) at 10Gb/s and a feedforward equalizer (FFE) at 4Gb/s respectively. An LMS algorithm in [4] adjusts the threshold levels requiring fine-tuning (8b resolution). This paper presents a 64Gb/s PAM-4 transceiver utilizing an ADC-based receiver (RX), with an analog front-end (AFE) based on a 6b, 1b folding, flash ADC with adaptive threshold levels. A fast greedy-search algorithm is used to choose the optimal quantizer thresholds for minimum BER over a given channel. This provides a near-optimal way of power-scaling the ADC when the channel loss doesn't require the ADC's full resolution. The optimization can work in the background for any equalizer structure, does not place additional requirements on the ADC design, and never diverges, unlike LMS-based approaches [4].","PeriodicalId":6617,"journal":{"name":"2018 IEEE International Solid - State Circuits Conference - (ISSCC)","volume":"45 1","pages":"110-112"},"PeriodicalIF":0.0,"publicationDate":"2018-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84822146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Daneshgar, K. Dasgupta, C. Thakkar, A. Chakrabarti, Shuhei Yamada, D. Choudhury, J. Jaussi, B. Casper
{"title":"A 27.8Gb/s 11.5pJ/b 60GHz transceiver in 28nm CMOS with polarization MIMO","authors":"S. Daneshgar, K. Dasgupta, C. Thakkar, A. Chakrabarti, Shuhei Yamada, D. Choudhury, J. Jaussi, B. Casper","doi":"10.1109/ISSCC.2018.8310236","DOIUrl":"https://doi.org/10.1109/ISSCC.2018.8310236","url":null,"abstract":"The industry-wide impetus on user experience and immersive content for handheld/wearable consumer devices is accelerating the demand for high-speed millimeter-wave (mm-wave) PAN wireless connectivity. Next-generation 60GHz PAN standards [1] have made it mandatory to achieve >20Gb/s rates using wide (4.32GHz or higher) bandwidth. However, in order to support multiple concurrent high-speed links, it is imperative to achieve high spectral efficiency. MIMO techniques allow for such spectrum reuse by employing simultaneous spatial streams. However, unlike at low-GHz frequencies, which exhibit rich multipath scattering and therefore a high-rank TX-RX MIMO channel matrix, mm-wave propagation is fundamentally less diverse due to higher reflection/absorption.","PeriodicalId":6617,"journal":{"name":"2018 IEEE International Solid - State Circuits Conference - (ISSCC)","volume":"33 1","pages":"166-168"},"PeriodicalIF":0.0,"publicationDate":"2018-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82436799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
P. Busson, H. Luong, C. Hung, H. Krishnaswamy, T. Georgantas, P. Mercier
{"title":"F4: Circuit and system techniques for mm-wave multi-antenna systems","authors":"P. Busson, H. Luong, C. Hung, H. Krishnaswamy, T. Georgantas, P. Mercier","doi":"10.1109/ISSCC.2018.8310406","DOIUrl":"https://doi.org/10.1109/ISSCC.2018.8310406","url":null,"abstract":"The 5th generation wireless system (5G) is proposed as the next major revolution of mobile wireless technologies. Carrier frequencies in the mm-wave bands and MIMO/multi-antenna systems are expected to be extensively employed to achieve significantly enhanced data rate, spectral/spatial diversity/efficiency and minimized system latency. The design of commercial high-performance radio transceivers at mm-wave represents a major technical challenge. This forum is focused on current state-of-the-art and future directions of multi-antenna systems in the mm-wave bands, from both system architecture and circuit design perspectives. Key system integration aspects such as antenna design, packaging and built-in self-test will also be covered.","PeriodicalId":6617,"journal":{"name":"2018 IEEE International Solid - State Circuits Conference - (ISSCC)","volume":"10 1","pages":"511-513"},"PeriodicalIF":0.0,"publicationDate":"2018-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81863238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anh Chu, Benedikt Schlecker, K. Lips, M. Ortmanns, J. Anders
{"title":"An 8-channel 13GHz ESR-on-a-Chip injection-locked vco-array achieving 200μM-concentration sensitivity","authors":"Anh Chu, Benedikt Schlecker, K. Lips, M. Ortmanns, J. Anders","doi":"10.1109/ISSCC.2018.8310330","DOIUrl":"https://doi.org/10.1109/ISSCC.2018.8310330","url":null,"abstract":"Thanks to their unmatched specificity, methods based on magnetic resonance effects are amongst the most powerful spectroscopic techniques available today. Out of these methods, due to the availability of improved electronics at the required frequencies in the tens of GHz region, electron spin resonance (ESR) spectroscopy is gaining significant attention in the research community as a tool in life science and materials science research.","PeriodicalId":6617,"journal":{"name":"2018 IEEE International Solid - State Circuits Conference - (ISSCC)","volume":"5 1","pages":"354-356"},"PeriodicalIF":0.0,"publicationDate":"2018-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84378380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A continuous-mode harmonically tuned 19-to-29.5GHz ultra-linear PA supporting 18Gb/s at 18.4% modulation PAE and 43.5% peak PAE","authors":"Tso-Wei Li, Min-Yu Huang, Hua Wang","doi":"10.1109/ISSCC.2018.8310358","DOIUrl":"https://doi.org/10.1109/ISSCC.2018.8310358","url":null,"abstract":"The 5th generation (5G) mm-wave systems are expected to support wideband spectrum-efficient modulations (e.g., 64-QAM or 256-QAM) to achieve Gb/s-link-throughput revolution. These complex modulation schemes, however, often come with high-density constellations that demand stringent linearity, i.e. AM-AM and AM-PM, on the mm-wave front-end circuits, in particular, the power amplifiers (PAs). In addition, to support future massive MIMOs, the mm-wave front-ends should be ultra-efficient in both their energy efficiency and area usage, posing even more constraints on the PA designs [1-5].","PeriodicalId":6617,"journal":{"name":"2018 IEEE International Solid - State Circuits Conference - (ISSCC)","volume":"17 1","pages":"410-412"},"PeriodicalIF":0.0,"publicationDate":"2018-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80085813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}